Browse > Article
http://dx.doi.org/10.5656/KSAE.2011.07.027

Comparison of Cuticular Hydrocarbons of Different Developmental Stages of the Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae)  

Cho, Sun-Ran (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Lee, Jeong-Eun (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Jeong, Jin-Won (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Yang, Jeong-Oh (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Yoon, Chang-Mann (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Kim, Gil-Hah (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Publication Information
Korean journal of applied entomology / v.50, no.3, 2011 , pp. 185-194 More about this Journal
Abstract
Aliphatic cuticular hydrocarbons (CHCs) of different developmental stages of the spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) were analyzed using GC and GC-MS. The numbers of carbons in the major CHCs of each developmental stage 32, 33, 28, 38, 37 in the egg, 1st, 2nd, 3rd, and 4th instar nymphal stages, and adults, respectively. The cuticle of Lycorma delicatula contains mainly methyl-branched 9-methylheptacosane (15.11%) in the egg stage, and a high proportion of n-heptacosane in nymphal stages (15.75, 22.42, 25.04, and 23.11 % in the 1st, 2nd, 3rd and 4th instars, respectively). In contrast, male and female adults had high proportions of n-nonacosane (13.42 and 16.55%). The chemical constituents of CHCs were classified into five groups (n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins) and group profiles of each developmental stage were compared. Egg surface was composed mainly monomethylalkanes (45.39%), a saturated hydrocarbon. Nymph CHCs consisted primarily of n-alkanes (37.63 to 46.12%). There was a difference between adult male and female CHCs. However, both contained n-alkanes and monomethylalkanes. CHCs with trimethyl or double bonded structure were rare in all stages.
Keywords
Cuticular hydrocarbons (CHC); Spot clothing wax cicada; Lycorma delicatula; Developmental stage; Composition;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Darrouzet, E., S. Lebreton, N. Gouix, A. Wipf and A.G. Bagneres. 2010. Parasitoids modify their oviposition behavior according to the sexual origin of conspecific cuticular hydrocarbon traces. J. Chem. Ecol. 36: 1092-1100.   DOI   ScienceOn
2 Everaerts, C., J-P. Farine, M. Cobb and J-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS ONE 5(3): e9607. doi:10.1371/journal.pone.0009607.
3 Yew, J.Y., R.B. Cody and E.A. Kravitz. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. PNAS 105(20): 7135-7140.   DOI   ScienceOn
4 Smith, A.A., B. Holldober and J. Liebig. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biol. 19: 78-81.   DOI   ScienceOn
5 Yusuf, A.A., C.W.W. Pirk, R.M. Crewe, P.G.N. Njagi, I. Gordon and B. Torto. 2010. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J. Chem. Ecol. 36: 441-448.   DOI   ScienceOn
6 Xiao, G. 1991. Forest insect of China, forest research institute. 1361pp. Chinese Academy of Forestry, Beijing.
7 Said, I., G. Costagliola, I. Leoncini and C. Rivault. 2005a. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51: 995-1003.   DOI   ScienceOn
8 Said, I., C. Gaertner, M. Renou and C. Rivault. 2005b. Perception of cuticular hydrocarbons by the olfactory organs in Periplaneta americana (L.) (Insecta: Dicyoptera). J. Insect Physiol. 51: 1384-1389.   DOI   ScienceOn
9 Shin, Y.H., S.R. Moon, C.M. Yoon, K.S. Ahn and G.H. Kim. 2010. Insecticidal Activity of 26 insecticides against eggs and nymphs of Lycorma delicatula (Hemiptera: Fulgoridae). Korean J. Appl. Entomol. 14: 157-163.
10 Torres, C.W., M. Brandt and N.D. Tsutsui. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect. Soc. 54: 363-373.   DOI   ScienceOn
11 Urech, R., G.W. Brown, C.J. Moore and P.E. Green. 2005. Cuticular hydrocarbons of buffalo fly, Haematobia exigua, and chemotaxonomic differentiation from horn fly, H. irritans. J. Chem. Ecol. 31: 2451-2461.   DOI   ScienceOn
12 Uva, P., J.-L. Clément and A.-G. Bagnères. 2004. Colonial and geographic variations in agonistic behavior, cuticular hydrocarbons and mtDNA of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae). Insect Soc. 51: 163-170.   DOI   ScienceOn
13 Wagner, D., M. Tissot, W. Cuevas and D.M. Gordon. 2000. Harvester ants utilize culticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26: 2245-2257.   DOI   ScienceOn
14 Lucas, C., D.B., Pho, J.M. Jallon and D. Fresneau. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J. Insect Physiol. 51: 1148-1157.   DOI   ScienceOn
15 Nelson, D.R. 1993. Methyl-branched lipids in insects. pp. 271-315. In Insect lipids: Chemistry, biochemistry and biology, eds. by D.W. Stanley-samuelson and D.R. Nelson. University of Nebraska Press, Lincoln, Nebraska.
16 Nelson, D.R. and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp. Biochem. Physiol. B 135: 273-284.   DOI   ScienceOn
17 Lommelen, E., Johnson, C.A., Drijfhout, F.P., Billen, J., Wenseleers, T. and B. Gobin. 2006. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J. Chem. Ecol. 32: 2023-2034.   DOI   ScienceOn
18 Nunes, T.M., I.C.C. Turatti, S. Mateus, F.S. Nascimento, N.P. Lopes and R. Zucchi. 2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Gen. Mol. Res. 2: 589-595.
19 Page, M., L.J. Nelson, G.J. Blomquist and S.J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23: 1053-1099.   DOI
20 Park, J.D., M.Y. Kim, S.G. Lee, S.C. Shin, J.H. Kim and I.K. Park. 2009. Biological characteristics of Lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48: 53-57.   DOI
21 Martin, S. and F. Drijfhout. 2009. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35: 1151-1161.   DOI   ScienceOn
22 Kim, J.S., M.K. Kim, J.H. Han, C.M. Yoon, K.S. Choi, S.C. Shin and G.H. Kim. 2006. Possible presence of pheromone in mating behavior of the pine sawyer Monochamus saltuarius Gebler (Coleoptera:Cerambycidae). J. Asia-Pacific Entomol. 9: 347-352.   DOI   ScienceOn
23 Jurenka, R.A. and M. Subchev. 2000. Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth, Lymantria dispar. Arch. insect Biochem. Physiol. 43: 108-115.   DOI   ScienceOn
24 Kaib, M., P. Jmhasly, L. Wilfert, W. Durka, S. Franke, W. Francke, R.H. Leuthold and R. Brandl. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385.   DOI
25 Kather, R., F.P. Drijfhout and S.J. Martin. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. DOI 10.1007/s10886-011-9909-4.
26 Kim, Y.K., D.R. Philips, T. Chao and L. Ehrman. 2004. Developmental isolation and subsequent adult behavior of Drosophila paulistorum. VI. Quantitative variation in cuticular hydrocarbon. Behavior Genetics 34: 385-394.   DOI
27 Lee, C.J., J.Y. Shen, S.C. Park and J.H. Shim. 2003. Chemical analysis of cuticular hydrocarbons in Apis mellifera L. and Apis ceranea F. Korean J. Appl. Entomol. 42: 9-13.
28 Lee, J.E., S.R. Moon, H.G. Ahn, S.R. Cho, J.O. Yang, C.M. Yoon and G.H. Kim. 2009. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean J. Appl. Entomol. 48: 467-477.   DOI
29 Fan, Y., D. Eliyahu and C. Schal. 2008. Cuticular hydrocarbons as maternal provisions in embryos and nymphs of the cockroach Blattella germanica. J. Exp. Biol. 211: 548-554.   DOI   ScienceOn
30 Lee, J.E., E.H. Kim, C.M. Yoon and G.H. Kim. 2010. Comparison of cuticular hydrocarbons of the pine sawyer (Monochamus saltuarius), Japanese pine sawyer (Monochamus alternatus) and oak longicorn beetle (Moechotypa diphysis). Korean J. Appl. Entomol. 49: 211-218.   DOI
31 Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fennici 41: 789-808.
32 Gibbs, A.G., F. Fukuzato and L.M. Matzkin. 2003. Evolution of water conservation mechanisms in Drosophila. J. Exp. Biol. 206: 1183-1192.   DOI   ScienceOn
33 Han, J.M., H. Kim, E.J. Lim, S. Lee, Y.J. Kwon and S. Cho. 2008. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae), finally, but suddenly arrived in Korea. Entomol. Res. 38: 281-286.   DOI   ScienceOn
34 Hefetz, A., J. Tengö, G. Lübke and W. Francke. 1993. Inter-colonial and intra-colonial variation in Dufour's gland secretion in the bumblebee species Bombus hypnorum (Hymenoptera: Apidae). pp. 469-480. In Advances in life sciences. Sensory Systems of Arthropods, eds. by K. Weise, F.G. Gribakin, and G. Renninger. pp. 469-480. Birkhause Verlag, Basel, Switzerland.
35 Howard, R.W., C.A. McDaniel, D.R. Nelson, G.J. Blomquist, L.T. Gelbaum and L.H. Zalkow. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential speciesand caste-recognition cues. J. Chem. Ecol. 8: 1227-1239.   DOI   ScienceOn
36 Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication. pp.179-226. In Insectlipids:chemistry, biochemistry and biology eds. D.W. Stanley-Samuelson and D.R. Nelson, University of Nebraska Press, Lincoln, Nebraska.
37 Barbour, J.D., E.S. Lacey and L.M. Hanks. 2007. Cuticular hydrocarbons mediate mate recognition in a species of longhorned beetle (Coleoptera: Cerambycidae) of the primitive subfamily prioninae. Ann. Entomol. Soc. Am. 100: 333-338.   DOI
38 Haverty, M.I., L.J. Nelson and M. Page. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus shiraki in the united states similarities and origins of introductions. J. Chem. Ecol. 16: 1635-1647.   DOI   ScienceOn
39 Akino, T. 2006. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Appl. Entomol. Zool. 41: 667-677.   DOI   ScienceOn
40 Bernier, U.R., D.A. Carlson and C.J. Geden. 1998. Gas chromatography/ mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. J. Am. Soc. Mass Spectrom. 9: 320-332.   DOI   ScienceOn
41 Blomquist, G.J., D.R. Nelson and M. de Renobales. 1987. Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6: 227-265.   DOI
42 Boo, K.S. 2001. Insect physiology. Seongmunsa Co. Publishing.
43 Boroczky, K., K.C. Park, R.D. Minard, T.H. Jones, T.C. Baker and J.H. Tumlinson. 2008. Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens, and Manduca sexta. J. Insect Physiol. 54: 1385-1391.   DOI   ScienceOn
44 Cuvillier-Hot, V., M. Cobb, C. Malosse and C. Peeters. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Chem. Ecol. 47: 485-493.