Browse > Article
http://dx.doi.org/10.14478/ace.2016.1004

Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes  

Koh, Hyoung Lim (Department of Chemical Engineering, RCCT, Hankyong National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.2, 2016 , pp. 128-134 More about this Journal
Abstract
Due to the great development made in converting the shale gas into the more valuable products, research and commercialization for production technology of olefins like propylene, butenes, butadiene from light alkanes have been intensively investigated. Especially the technology using oxygen like oxidative dehydrogenation or selective hydrogen combustion to overcome thermodynamic limit of direct dehydrogenation conversion has been extensively studied and some cases of applying this technology to the plant scale was reported. In this review, we have categorized the technology into two parts; gas phase oxygen utilization technology and lattice oxygen utilization technology. The trends, results and future direction of the technology are discussed.
Keywords
dehydrogenation; olefin; oxygen; shale gas; lattice oxygen;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. J. Hill, D. M. Jarvie, J. Zumberge, M. Henry, and R. M. Pollastro, Oil and gas geochemistry and petroleum system of the Fort Worth Basin, AAPG Bull., 91(4), 445-474 (2007).   DOI
2 M. M. Bhasin, J. H. McCain, B. B. Vora, T. Imai, and P. R. Pujado, Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal. A-Gen., 221, 397 (2001).   DOI
3 G. E. Keller and M. M. Bhasin, Synthesis of ethylene via oxidative coupling of methane. 1. Determination of active catalysts, J. Catal., 73, 9-19 (1999).
4 M. M. Bhasin, Feasibility of ethylene synthesis via catalytic oxidative coupling of methane, in: paper presented at the Methane Conversion Symposium, Auckland, New Zealand, 27 April to 1 May (1987).
5 M. M. Bhasin, Feasibility of Ethylene Synthesis via Oxidative Coupling of Methane, Elsevier, Amsterdam, Stud. Surf. Sci. Catal., 36, 343-357 (1988).   DOI
6 H. Jachow, Polymetallic oxide materials, World Patent 99/42404 (1999).
7 G. Descat, Procede d'oxydeshydrogenation d'alcanes en alcenes, World Patent 98/24742 (1998).
8 S. Wang, K. Murata, T. S. Hamakawa, K. Suzuki, Dehydrogenation of Ethane into Ethylene by Carbon Dioxide over Chromium Supported on Sulfated Silica, Chem. Lett., 28, 569-570 (1999).   DOI
9 P. Viparelli, P. Ciambelli, L. Lisi, G. Rupooplo, G. Russo, and J. C. Volta, Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts, Appl. Catal. A, 184, 291-301 (1999).   DOI
10 D. Creaser, B. Andersson, R. R. Hudgins, and P. L. Silverston, Oxygen partial pressure effects on the oxidative dehydrogenation of propane, Chem. Eng. Sci., 54, 4365-4370 (1999).   DOI
11 Z. M. Fang, Q. Hong, Z. H. Zhou, S. J. Dai, W. Z. Weng, and H. L. Wan, Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method, Catal. Lett., 61, 39-44 (1999).   DOI
12 R. Rulkens and T. D. Tilley, A Molecular precursor route to active and selective vanadia-silica-zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane, J. Am. Chem. Soc., 120, 9959-9960 (1998).   DOI
13 http://www.thyssenkrupp-industrial-solutions.com/fileadmin/documents/brochures/TKIS_STAR_Process.pdf.
14 G. Rothenberg, E. A. de Graaf, and A. Bliek, Solvent-Free Synthesis of Rechargeable Solid Oxygen Reservoirs for Clean Hydrogen Oxidation, Angew. Chem., 115, 3487-3490 (2003).
15 R K. Grasselli, D. L. Stern, and J. G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): I. DH ${\rightarrow}$ SHC ${\rightarrow}$ DH catalysts in series (co-fed process mode), Appl. Catal. A-Gen., 189, 1-8 (1999).   DOI
16 R. K. Grasselli, D. L. Stern, and J. G. Tsikoyiannis, Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion(SHC) II. DH+SHC catalysis physically mixed (redox process mode), Appl. Catal. A-Gen., 189, 9-14 (1999).   DOI
17 J. G. Tsikoyiannis, D. L. Stern, and R. K. Grasselli, Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation, J. Catal., 184, 77-86 (1999).   DOI
18 L. Oviol, M. Bruns, V. Fridman, J. Merriam, and M. Urbancic, Mind the Gap, Hydrocarbon Eng., September (2012).
19 V. V. Lunin and O. V. Chetina, Neftekhimiya, 30, 202-206 (1990).
20 R. Liu, Y. Zhu, Z. Suk, H. Wang, and X. Zhou, Support effects on catalytic performance for selective combustion of hydrogen in the presence of propene, Fuel Process. Technol., 108, 82-88 (2013).   DOI
21 S. Kaneko, T. Arakawa, M. Ohshima, H. Kurokawa, and H. Miura, Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts, Appl. Catal. A-Gen., 356, 80-87 (2009).   DOI
22 H. Dyrbeck, N. Hammer, M. Ronning, and E. A. Blekkan, Catalytic oxidation of hydrogen over Au/$TiO_2$ catalysts, Top. Catal., 45, 21-24 (2007).   DOI
23 L. M. van der Zande, E. A. de Graaf, and G. Rothenberg, Design and parallel synthesis of novel selective hydrogen oxidation catalysts and their application in alkane dehydrogenation, Adv. Synth. Catal., 344, 884-889 (2002).   DOI
24 L. Late, J.-I. Rundereim, and E. A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons 1. Pt-based catalysts, Appl. Catal. A-Gen., 262, 53-61 (2004).   DOI
25 C.-H. Lin, K.-C. Lee, B.-Z. Wan, Development of catalyst system for selective combustion of hydrogen, Appl. Catal. A-Gen., 164, 59-67 (1997).   DOI
26 L. Late, W. Thelin, and E. A. Blekkan, Selective combustion of hydrogen in the presence of hydrocarbons Part 2. Metal oxide based catalysts, Appl. Catal. A-Gen., 262, 63-68 (2004).   DOI
27 N. V. Testova, A. S. Shalygin, V. V. Kaichev, T. S. Glazneva, E. A. Paukshtis, and V. N. Parmon, Oxidative dehydrogenation of propane by molecular chlorine, Appl. Catal. A-Gen., 505, 441-446 (2015).   DOI
28 M. D. Putra, S. M. Al-Zahrani, and A. E. Abasaeed, Effect of Sr loading on oxydehydrogenation of propane to propylene over $Al_2O_3$-supported V-Mo catalysts, J. Energy Chem., 22, 778-782 (2013).   DOI
29 B. Chua, H. Ana, T. A. Nijhuisb, J. C. Schoutenb, and Y. Cheng, A self-redox pure-phase M1 MoVNbTeOx/$CeO_2$ nanocomposite as a highly active catalyst for oxidative dehydrogenation of ethane, J. Catal., 329, 471-478 (2015).   DOI
30 G. C. -Galicia, R. S. Ruiz-Martinez, F. Lopez-Isunza, and C. O. Castillo-Araiza, Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/$TiO_2$ catalyst in an industrial-scale packed bed catalytic reactor, Chem. Eng. J., 280(15), 682-694 (2015).   DOI
31 G. Xiong and J. Sang, Oxidative dehydrogenation of propane over nanodiamond modified by molybdenum oxide, J. Mol. Catal. A-Chem., 392, 315-320 (2014).   DOI
32 B. Chu, L. Truter, T. A. Nijhuis, and Y. Cheng, Performance of phase-pure M1 MoVNbTeOx catalysts by hydrothermal synthesis with different post-treatments for the oxidative dehydrogenation of ethane, Appl. Catal. A-Gen., 498(5), 99-106 (2015).   DOI
33 E. V. Ishchenko, T. Yu. Kardash, R. V. Gulyaev, A. V. Ishchenko, V. I. Sobolev, and V. M. Bondareva, Effect of K and Bi doping on the M1 phase in MoVTeNbO catalysts for ethane oxidative conversion to ethylene, Appl. Catal. A-Gen., 514(25), 1-13 (2016).   DOI
34 J. Santander, E. Lopez, A. Diez, M. Dennehy, M. Pedernera, and G. Tonetto, Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane, Chem. Eng. J., 255, 185-194 (2014).   DOI
35 M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of the COx species, Chem. Eng. J., 250(15), 14-24 (2014).   DOI
36 S. A. Al-Ghamdi, H. I. de Lasa, Propylene production via propane oxidative dehydrogenation over VOx/${\gamma}$-$Al_2O_3$ catalyst, Fuel, 128(15), 120-140 (2014).   DOI
37 M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, Kinetic modeling of oxidative dehydrogenation of propane (ODHP) over a vanadium-graphene catalyst: Application of the DOE and ANN methodologies, J. Ind. Eng. Chem., 20(4), 2236-2247 (2014).   DOI
38 A. Wegrzyniak, S. Jarczewski, A. Wach, E. Hedrzak, P. Kustrowski, and P. Michorczyk, Catalytic behaviour of chromium oxide supported on CMK-3 carbon replica in the dehydrogenation propane to propene, Appl Catal A-Gen., 508, 1-9 (2015).   DOI
39 K. H. Kang, T. H. Kim, W. C. Choi, Y.-K. Park, U. G. Hong, D. S. Park, C.-J. Kim, and I. K. Song, Dehydrogenation of propane to propylene over CrOy-$CeO_2$-$K_2O$/${\gamma}$-$Al_2O_3$ catalysts: Effect of cerium content, Catal. Comm., 72(5), 68-72 (2015).   DOI
40 A. H. S. Kootenaei, J. Towfighi, A. Khodadadi, and Y. Mortazavi, Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane, Appl. Surf. Sci., 298(15), 26-35 (2014).   DOI
41 Y. Shan, Z. Sui, Y. Zhu, De Chen, and X. Zhou, Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation, Chem. Eng. J., 278(15), 240-248 (2015).   DOI
42 G. Wu, F. Hei, N. Zhang, N. Guan, L. Li, and W. Grunert, Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: Characterization and performance, Appl Catal A-Gen., 468(5), 230-239 (2013).   DOI
43 M. Hoj, A. D. Jensen, and J.-D. Grunwaldt, Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis, Appl Catal A-Gen., 451(31), 207-215 (2013).   DOI
44 Decavanadate-intercalated Ni-Al hydrotalcites as precursors of mixed oxides for the oxidative dehydrogenation of propane, Catal. Today, 192(1), 30, 36-43 (2012).   DOI
45 M. D. Putra, S. M. Al-Zahrani, and A. E. Abasaeed, Oxidative dehydrogenation of propane to propylene over $Al_2O_3$-supported Sr-V-Mo catalysts, Catal. Comm., 14(1), 107-110 (2011).   DOI
46 F. Ma, S. Chen, Y. Wang, F. Chen, and W. Lu, Characterization of redox and acid properties of mesoporous Cr-$TiO_2$ and its efficient performance for oxidative dehydrogenation of propane, Appl Catal A-Gen., 427-428(15), 145-154 (2012).   DOI
47 L. Kong, J. Li, Z. Zhao, Q. Liu, Q. Sun, J. Liu, and Y. Wei, Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: The effect of MoOx dispersion, Appl Catal A-Gen., 510(25), 84-97 (2016).   DOI
48 L. Wang, W. Chu, C. Jiang, Y. Liu, J. Wen, and Z. Xie, Oxidative dehydrogenation of propane over Ni-Mo-Mg-O catalysts, J. Natural Gas Chem., 21(1), 43-48 (2012).   DOI
49 A. Ates, C. Hardacre, and A. Goguet, Oxidative dehydrogenation of propane with $N_2O$ over Fe-ZSM-5 and Fe-$SiO_2$: Influence of the iron species and acid sites, Appl Catal A-Gen., 441-442(28), 30-41 (2012).   DOI
50 N. I. Kuznetsova, G. Y. Popova, L. I. Kuznetsova, V. I. Zaikovskii, S. V. Koscheev, T. V. Andrushkevich, A. S. Lisitsyn, V. A. Likholobov, and S. Han, Improving the performance of Pt-$H_3PMo_{12}O_{40}$ catalysts in the selective dehydrogenation of propane with $O_2$ and $H_2$, Catal. Today, 245(1), 179-185 (2015).   DOI
51 A. Lofberg, T. Giornelli, S. Paul, and E. B.-Richard, Catalytic coatings for structured supports and reactors: VOx/$TiO_2$ catalyst coated on stainless steel in the oxidative dehydrogenation of propane, Appl Catal A-Gen., 391(1-2), 43-51 (2011).   DOI