Browse > Article
http://dx.doi.org/10.14478/ace.2021.1018

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction  

Yoon, Young-Chan (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Song, Kang (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lim, Jeong-Hyeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Park, Chu-Sik (Korea Institute of Energy Research)
Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 305-311 More about this Journal
Abstract
Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.
Keywords
SAPO-34; Chitosan; Mesopore directing agent; DTO reaction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. S. Kim, S. G. Lee, K. H. Choi, D. H. Lee, C. S. Park, and Y. H. Kim, Effects of Co/Al and Si/Al molar ratios on DTO (dimethyl ether to olefins) reaction over CoAPSO-34 catalyst, Appl. Chem. Eng., 26, 138-144 (2015).   DOI
2 I. M. Dahl and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol, J. Catal., 149, 458-464 (1994).   DOI
3 Z. Jie, C. Yu, N. Zeeshan, W. Yao, and W. Fei, In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process, Chin. J. Chem. Eng., 18, 979-987 (2010).   DOI
4 S. C. Baek, Y. J. Lee, and G. W. Jeon, Effect of water addition on the conversion of dimethyl ether to light olefins over SAPO-34, Korean Chem. Eng. Res., 44, 345-349 (2006).
5 Y. K. Park, J. Y. Jeon, S. Y. Han, J. R. Kim, and C. W. Lee, Catalytic cracking of naphtha into light olefins, Korean Chem. Eng. Res., 41, 549-557 (2003).
6 F. Lonyi and J. Valyon, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Micropor. Mesopor. Mater., 47, 293-301 (2001).   DOI
7 P. Wang, D. Yang, J. Hu, J. Xu, and G. Lu, Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction, Catal. Today, 212, 62.e1-62.e8 (2013).   DOI
8 H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013).
9 Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, and N. Yamaoka, Catalytic cracking of naphtha to light olefins, Catal. Surv. Jpn., 4, 157-167 (2001).   DOI
10 T. Ren, M. K. Patel, and K. Blok, Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs, Energy, 33, 817-833 (2008).   DOI
11 E. S. Yi, and S. R. Hong, Gas permeation characteristics of PEBAX-PEI composite membranes containing ZIF-8 modified with amine, Appl. Chem. Eng., 31, 679-687 (2020).   DOI
12 J. Y. Jung, Y. M. Lee, and E. Y. Lee, Value-added utilization of lignin residue from pretreatment process of lignocellulosic biomass, Appl. Chem. Eng., 27, 135-144 (2016).   DOI
13 X. Wu, M. G. Abraha, and R. G. Anthony, Methanol conversion on SAPO-34: Reaction condition for fixed-bed reactor, Appl. Catal. A: Gen., 260, 63-69 (2004).   DOI
14 Q. Sun, N. Wang, G. Guo, X. Chen, and J. Yu, Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance, J. Mater. Chem. A, 3, 19783-19789 (2015).   DOI
15 T. Ren, M. Patel, and K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy, 31, 425-451 (2006).   DOI
16 T. A. Semelsberger, R. L. Borup, and H. L. Greene, Dimethyl ether (DME) as an alternative fuel, J. Power Sources, 156, 497-511 (2006).   DOI
17 A. T. Najafabadi, S. Fatemi, M. Sohrabi, and M. Salmasi, Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst, J. Ind. Eng. Chem., 18, 29-37 (2012).   DOI
18 N. Fatourehchi, M. Sohrabi, S. J. Royaee, and S. M. Mirarefin, Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO), Chem. Eng. Res. Des., 89, 811-816 (2011).   DOI
19 K. H. Choi, D. H. Lee, H. S. Kim, C. S. Park, and Y. H. Kim, Effects of acid treatment of SAPO-34 on the catalytic lifetime and light olefin selectivity during DTO reaction, Appl. Chem. Eng., 26, 217-223 (2015).   DOI
20 K. Song, Y. C. Yoon. C. S. Park, and Y. H. Kim, Effect of etching treatment of SAPO-34 catalyst on dimethyl ether to olefins reaction, Appl. Chem. Eng., 32, 20-27 (2021).   DOI
21 A. K. Singh, R. Yadav, and A. Sakthivel, Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves, Micropor. Mesopor. Mater., 181, 166-174 (2013).   DOI
22 D. Li, Y. Huang, K. R. Ratinac, S. P. Ringer, and H. Wang, Zeolite crystallization in crosslinked chitosan hydrogels: Crystal size control and chitosan removal, Micropor. Mesopor. Mater., 116, 416-423 (2008).   DOI
23 T. Witoon, S. Tepsarn, P. Kittipokin, B. Embley, and M. Chareonpanich, Effect of pH and chitosan concentration on precipitation and morphology of hierarchical porous silica, J. Non-Cryst. Solids, 357, 3513-3519 (2011).   DOI
24 T. Witoon and M. Chareonpanich, Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture, Mater. Lett., 81, 181-184 (2012).   DOI
25 T. Witoon, M. Chareonpanich, and J. Limtrakul, Size control of nanostructured silica using chitosan template and fractal geometry: Effect of chitosan/silica ratio and aging temperature, J. Sol-Gel Sci. Technol., 56, 270-277 (2010).   DOI
26 B. G. Min and G. Seo, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
27 V. Pedroni, P. C. Schulz, M. E. G. Ferreira, and M. A. Morini, A chitosan-templated monolithic siliceous mesoporous-macroporous material, Colloid Polym. Sci., 278, 964-971 (2000).   DOI
28 Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin, and S. Y. Jeong, The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction, Appl. Chem. Eng., 19, 559-567 (2008).
29 Y. J. Lee, S. C. Baek, and K. W. Jun, Methanol conversion on SAPO-34 catalysts prepared by mixed template method, Appl. Catal. A: Gen., 329, 130-136 (2007).   DOI
30 A. T. Aguayo, A. E. Campo, A. G. Gayubo, A. Tarrio, and J. Bilbao, Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins, J. Chem. Technol. Biotechnol., 74, 315-321 (1999).   DOI
31 J. F. Haw, W. Song, D. M. Marcus, and J. B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res., 36, 317-326 (2003).   DOI
32 E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst prepared by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014).   DOI
33 Q. Sun, N. Wang, D. Xi, M. Yang, and J. Yu, Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance, Chem. Commun., 50, 6502-6505 (2014).   DOI
34 Y. Cui, Q. Zhang, J. He, Y. Wang, and F. Wei, Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins, Particuology, 11, 468-474 (2013).   DOI
35 X. Chen, A. Vicente, Z. Qin, V. Ruaux, J. P. Gilson, and V. Valtchev, The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching, Chem. Commun., 52, 3512-3515 (2016).   DOI
36 J. Y. Kim, J. Kim, S. T. Yang, and W. S. Ahn, Mesoporous SAPO-34 with amine-grafting for CO2 capture, Fuel, 108, 515-520 (2013).   DOI