Microwave Assisted Reaction of Condensed Thiophenes With Electron Poor Olefins

Khadijah M. Al-zaydi* and Mohamed H. Elnagdi ${ }^{+}$
Department of Chemistry, Girls College of Education, Jeddah, P.O.50918 Jeddah 21533, Kingdom of Saudi Arabia
"Department of Chemistry; Faculty of Science; Cairo University, Giza-A. R. Egypt
Repnint requested to Khadijah M. Al-Zaydi (2003.5.27 접수)

Microwave Assisted Reaction of Condensed Thiophenes With Electron Poor Olefins

Khadijah M. Al-zaydi* and Mohamed H. Elnagdi ${ }^{\dagger}$
Department of Chemistry, Girls College of Education, Jeddah, P.O. 50918 Jeddah 21533, Kingdom of Saudi Arabia
${ }^{4}$ Department of Chemistry; Faculty of Science; Cairo University, Giza-A. R. Egypt
Reprint requested to Khadijah M. Al-Zaydi

(Received May 27, 2003)
요 약. 아미노싸이에노피리다진($\mathbf{l a}, \mathbf{b}$)라 아미노싸이에노쿠마린 ($\mathbf{2}$)은 DMFDMA와 축합반웅을 하여 아미딘(3a, b) 을 헝성한다. 이 화합물들을 N 페널말레이마이드와 반응시키면 화합물 $\mathbf{9}$ 와 $\mathbf{1 0}$ 이 얻어진다. 반면에 $\mathbf{3 a}, \mathrm{b}, \mathbf{4}, \mathbf{1 8}, \mathbf{1 9}$, 20 을 말레산 무수물과 반웅시키면 포밀 유도체인 $5 \mathrm{a}, \mathrm{b}, 6,21,22,23$ 든이 얻어진다. 하미딘 화합물 $3 \mathrm{a}, \mathrm{b}$ 를 다이 에털 퓨마레이트와 반응시키면 가수눈ㄴㅎㅅ산물인 아미던 14 를 거쳐 11 이 얻어진다. N 페널말레이마이드를 마이크로웨이브 ㅇㅇ븐에서 반응시키면 $[2+2]$ 와 $[2+2+2]$ 고리첨가반옹 산눌이 언어진다.

주제어: 마이크로웨이브, 싸이오펜, 고리첨가반응

Abstract

Aminothienopyridazines 1a. b and aminothienocoumarin 2 condensed with DMFDMA to yield amidines $3 a, b$ and 4 . These compounds reacted with N-phenymaleimide to yield 9 and 10 . On the other hand reacting 3a, $b, 4,18,19$ and 20 with maleic anhydride afforded only the formylated derivatives $5 a, b, 6,21,22$ and 23 respectively. The reaction of $\mathbf{3 a}, \mathbf{b}$ with diethyl fumarate afforded 11, formed most likely via hydrolysis of the amidine $\mathbf{1 4}$ during working up the reaction mixture. Irradiation of N-pbenylnaleimide in microwave oven afforded [2+2] and [2+2+2] cycloaddition product.

Keywords: Microwave, Thiophene, Cycloaddition Reaction

INTRODUCTION

The cycloaddition of condensed aminothiophenes with electron poor olefins has proved to be an efficient route to benzo-fused heteroaromatics. ${ }^{1.5}$ It was suggested that presence of free amino groups is essential for reactivity of condensed aminothiophenes as dienes in the Diels-Alder reaction. It occurred to
us to see if substituted condensed aminothiophenes could also act as active dienes in the Diels-Alder reaction if drastic reaction condition were used.

RESULTS AND DISCUSSION

Consequently we condensed amino thienopyridazines 1a, \boldsymbol{b} and aminothienocoumarine 2 with dimethyl-
formamide dimethylacetal (DMFDMA) and investigated the reactivity of the resulting amidines $\mathbf{3 a}, \mathbf{b}$ and 4 toward electron-poor olefins. In polar solvents, only hydrolysis of the amidine moiety in 3 and 4 afforded 5 and 6 , respectively. Consequently we investigated the solventless addition of electronpoor olefins under a microwave irradiation, a technology that has been extensively utilized to affect Diels-Alder additions. ${ }^{6.7} \mathrm{~N}$-Phenylmaleimide under this condition reacted smoothly with 3a,b and 4 affording 9 and 10 , which are assumed to be formed via intermediacy of cycloadducts 7,8 which then loses formamidine to yield the final products 9 , 10 (Scheme 1, 2).
In contrast to this, the reaction of $\mathbf{3}$ with diethyl fumarate in microwave oven has afforded phthalazine derivatives $\mathbf{1 1}$ formed via initial formation of cycloadduct when treated with diethyl fumarate 12 then eliminate $\mathrm{H}_{2} \mathrm{~S}$ to yield the non-isolable intermediate $\mathbf{1 4}$ which is then hydrolysed to afford the compound 11. Compounds $14,18,19$ and 20 were recovered unreacted when treated with diethyl fumarate under the similar condition. Under a variety of conditions, maleic anhydride failed to react with $\mathbf{3 a}, \mathbf{b}, \mathbf{4}, 18,19$ and $\mathbf{2 0}$. Onty hydrolysis products to the formyl derivatives $5,6,21,22$ and $\mathbf{2 3}$

9

 hydrolysis

Scheme 1.

Scheme 3.
were observed (Scheme 3, 4). The difference in the behavior of $\mathbf{3}$ toward maleic anthydride and N -phenylmaleimide reflects their different activity as dienes in cycloaddition reactions. Consequently only hydrolysis occurs with maleic anhydride.

Formation of 18, 19 and 20 has previously been reported via condensing 15,16 and 17 with dimeth-ylfomamide-dimethylacetal (DMF DMA). ${ }^{8}$ So treatment of 18.19 and 20 with maleic anhydride afforded 21, 22 and 23 respectively.

Scheme 4.
It is of value to report here that products of reacting aminothienocoumarine with N -phenylmaleimide were always contaminated with minor quantity of other products of $\mathrm{MS}=346$ and 519 . These were the only isolable products from the reaction of $\mathbf{1 8}$, 19 and 20 with N-phenylmalimide. The same results were also obtained on irradiating N-phenylmaleimide in microwave oven. It is assumed to be the products of, most likely, nonconcerted $[2+2]$ dimerization of two molecules of N -phenylmaleimide and the concerted $[2+2+2]$ trimerisation of three molecules of N-phenylmalimide and thus assigned structures 24 and $\mathbf{2 5}$ respectively. To our knowledge, it is the first reported dimerization and trimerization under N phenylmaleimide in microwave irradiation (Scheme 5). It seems that this reaction proceeds much faster than cycloaddition to the diene system in 18,19 and 20. So this is reason why cycloaddition reaction did not proceed with these compounds.

Experimental

All melting points were measured on Gallenkamp electrothermal melting point apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a Pye Unicam SP 3-300 Spectrophotometer. ${ }^{~}{ }^{\prime} \mathrm{H}$ NMR spectra were recorded in dcuterated dimethylsulfoxide ($D M S O-\mathrm{d}_{6}$) or deuterated chloroform (CDCl_{3}) on either Varian Gemini ('H NMR at $200 \mathrm{MH7}$) or Bruker DPX (${ }^{1} \mathrm{H}$. ${ }^{13} \mathrm{C}$ NMR at 400 MHz) spectrometer using tetramethyisilane (TMS) as an internal reference and results are expressed as

Scheme 5 .
δ values. Mass spectra were performed on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Microwave irradiation was carried out using commercial microwave oven and irradiation power of 450 W. Elemental analyses were carried out at the Microanalytical center of Cairo University.
General Procedure for the preparation of $\mathbf{3 a}, \mathrm{b}$, 4, 18, 19 and 20
Method A. $N N$-Dimethylformamide dimethylacetal (0.12 mol) was added to each of ($\mathbf{1 a} . \mathbf{b}, \mathbf{2}$, $15,16,17)(0.1 \mathrm{~mol})$ in xylene and the reaction mixture was refluxed for 6 hours. The removal of solvent under reduced pressure yielded the crude product which was crystallized from ethanol. ${ }^{\text {. }}$
Method B. Compound (1a. b, 2, 15, 16, 17) (0.1 mol) and dimethylformamide dimethylacetal (0.1 mol) was placed in the microwave oven and irradiated at full power for 5-7 mins then left to cool to room temperalure, and the solid was collected and crystallized from ethanol.

5-(Dimethylaminomethylenamino)-4-oxo-3-phe-nyl-3,4-dihydro-thieno[3,4-d] pyridazine-1-carboxylic acid ethyl ester 3a

Compound 3a was obtained as green crystals (method A: 61%, method B: 90%) mp $153^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ (370.43): Calcd: C, 58.36; H , 4.90 ; N, 15.12\% Found C, $58.39 ;$ H. $4.91 ;$ N, 15.14%. IR ($\mathrm{v} / \mathrm{cm}^{-1}$): 1729 (CO ester) 1711 (ring CO), ${ }^{1} \mathrm{H}$ NMR $(\delta \mathrm{ppm}): 1.38\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; 3.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right):$ $3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 4.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 702-7.60(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); $7.27 \mathrm{~s}, \mathrm{IH}$, thienyl H); $7.89 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}$. amidine H). ms: $\mathrm{M}^{-}(370)$.

5-(Dimethylaminomethylenamino)-3-(4-meth-oxypheny)-4-oxo-3,4dithydro-thieno (3, 4-d]pyridazine-1-carboxylic acid ethyl ester 3b

Compound 3b was obtained as yellow crystals (method A: 62%, method B: 92%) mp $147^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (400.45): Calcd: C, 56.99 ; H, $5.03 ; \mathrm{N}, 13.99$. Found C, $56.97 ; \mathrm{H}, 5.11 ; \mathrm{N}, 14.01 \%$. IR ($\mathbf{v} / \mathrm{cm}^{-1}$): $1730\left(\mathrm{CO}\right.$ ester) $1710 \mathrm{~cm}^{-1}$ (ring CO), ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): $1.39\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 3.08(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{N}\right) ; 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; $4.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 6.93-7.00(\mathrm{~m}, 2 \mathrm{H}$, Aryl H-3. 5); $7.28(\mathrm{~s}, 1 \mathrm{H}$, thienyl H$) ; 7.4-7.5(\mathrm{~m}, 2 \mathrm{H}$, Aryl $\mathrm{H}-2, \mathrm{H}-$ $6) ; 7.88 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}$, amidine H$) .{ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{ppm}$): $14.37\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 34.97\left(\mathrm{CH}_{3}-\mathrm{N}\right) ; 40.84\left(\mathrm{CH}_{3}-\mathrm{N}\right)$; $55.60\left(\mathrm{OCH}_{3}\right) ; 61.91\left(\mathrm{OCH}_{2}\right) ; 112.29,114.03,114.18$, $127.84,128.80,133.08,134,53,156.51$, (aromatic and heterocyclic carbon) 157.97 (amidine $\mathbf{C H}$) and 158.91, $163.45(2 \mathrm{CO})$. $\mathrm{ms}: \mathrm{M}^{+}(400)$.

3-N,N-Dimethylaminothieno[3,4:3', 4]benzo[b] pyran-4-one 4
Compound $\mathbf{4}$ was obtained as green crystals (method A: 72%, method B: 93%) mp $148^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (272.32): Calcd: C. 61.75; H, 4.44; N, 10.29. Found: C, 61.77 ; H, 4.45 ; N, 10.30%. IR (v/ cm^{-1}): $1690 \mathrm{~cm}^{-1}$ (ring CO), ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 2.47 (s, 3H, CH $)_{3}$; $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.13-7.7 \mathrm{ppm}(\mathrm{m}$, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$, thienyl H and amidine H). ms: M^{+}(272).
N-Benzothiazol-2-yl-N,N-dimethytformamidine 18
Compound 18 was obtained as colourless crystals (75%) mp $111^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}(205.28)$: Calcd: C, $58.51 ; \mathrm{H}, 5.40$; N, 20.47. Found: C, $58.57 ; \mathrm{H}, 5.45 ; \mathrm{N}, 20.30 \%$. ${ }^{\mathrm{l}} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): $3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 3.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 7.13-7.65$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 8.28 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}$, amidine H$) .{ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{ppm})$: $35.12\left(\mathrm{CH}_{3}-\mathrm{N}\right) ; 40.97\left(\mathrm{CH}_{3}-\mathrm{N}\right) ; 120.58$, $121.23,122.85,125.74,133.33,152.11$ (phenyl carbon), 156.54 (thiazole $\mathrm{C}-2$) and 173.61 (amidine). ms : $\mathrm{M}^{+}(205)$.
N, N-Dimethyl- N -(5-phenyl-2H-pyrazol-3-yl) formamidine 19

Compound 19 was obtained as buff crystals (method A: 78%, method B: 89%) $\mathrm{mp} 175^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4}(214.27):$ Calcd: C, $67.27 ; \mathrm{H}, 6.59$; N , 26.15. Found: C, $67.31 ;$ H, $6.60 ;$ N, 26.17%. IR (v/ cm^{-1}): $3200\left(\mathrm{NH}\right.$) and $3074 \mathrm{~cm}^{-1}(\mathrm{CH}),{ }^{1} \mathrm{H}$ NMR (δ
$\mathrm{ppm}): 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 3.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 6.13$ (s, 1H, pyrazol H-4); 7.34-7.78 (m, 5H, Ar-H); 7.86 ($\mathrm{s}, 1 \mathrm{H}$, amidine CH) and $11.9 \mathrm{ppm}(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{ppm}$): $34.94\left(\mathrm{CH}_{3}-\mathrm{N}\right) ; 40.66\left(\mathrm{CH}_{3}-\mathrm{N}\right)$; 87.83 (pyrazolyl C-4); 125.48, 127.50, 128.60, 133.77 (phenyl carbon), 150.0 (pyrazolyl C-2); 153.0 (pyrazolyl C-5) and 155.27 (amidine CH). ms: M^{+}(214).
N, N-Dimethyl- N -(2H-[1, 2, 4]triazol-3-yl)formamidine 20
Compound 20 was obtained as colourless crystals (method A: 76%, method B: 85%) mp $97^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{5}$ (139.16): Caled: C, 43.15; H, 6.52 , N, 50.33. Found: C, $43.20 ;$ H, 6.51 ; N, 50.36%. IR ($\mathrm{v} / \mathrm{cm}^{-1}$): $3325(\mathrm{NH}), 2980 \mathrm{~cm}^{-1}(\mathrm{CH}),{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 2.96(s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right) ; 3.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right)$; $7.96(\mathrm{~s}, 1 \mathrm{H}$, amidine CH$) ; 8.3$ ($\mathrm{s}, 1 \mathrm{H}$, trizol $\mathrm{H}-3$); and $12.7 \mathrm{ppm}(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) . \mathrm{ms}: \mathrm{M}^{+}(139)$.

Reaction of 3a, 3b, 4, 18, 19 and 20 with maleic anhydride

General Procedure.

Method A. A mixture of each of (3a, $\mathbf{b}, 4,18$, $19,20)(0.1 \mathrm{~mol})$ and maleic anhydride (0.1 mol) was heated at $200^{\circ} \mathrm{C}$ for $30-60$ mins, left to cool and triturated with ethanol. The solid product, so formed, was collected by filtration and crystallized from ethanol.

Method B. A mixture of each of ($\mathbf{3 a}, \mathbf{b}, \mathbf{4}, \mathbf{1 8}, 19$, 20) $(0.1 \mathrm{~mol})$ and maleic anhydride (0.1 mol) was placed in the microwave oven and irradiated at 450 W for 2-5 mins, then left to cool to room temperature, and the solid was collected and crystallized from ethanol.

5-Formylamino-4-oxo-3-phenyl-3,4-dihydrothieno [3,4-d]pyridazine-1-carboxylic acid ethyl ester 5a

Compound 5a was obtained as green crystals (method A: 53\%, method B, $2 \mathrm{~min}: 65 \%$) mp 249$250{ }^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}(343.36)$: Calcd: C, 55.97; H, 3.82; N, 12.24. Found: C, 55.99; H, 3.91: N, 12.14%. IR ($\mathrm{V}_{\mathrm{cm}}{ }^{-1}$): $3345(\mathrm{NH})$, 1731(CO ester) $1690\left(\mathrm{CO}\right.$) and $1645 \mathrm{~cm}^{-1}$ (ring CO), 'H NMR $(\delta \mathrm{ppm}): 1.43\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 4.48\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.39-$ $7.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.96(\mathrm{~s}, 1 \mathrm{H}$, thienyl H); 8.55 (s, $1 \mathrm{H}, \mathrm{CHO}$); $11.09 \mathrm{ppm}(\mathrm{s}, \mathrm{IH}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (δ ppm): $14.37\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 62.38\left(\mathrm{OCH}_{2}\right) ; 112.88,115.71$, $125.38,126.03,128.34,128.99,133,96$ (aromatic
and heterocyclic carbon) and $157.50,158.95,162.79$ (3CO). ms: M ${ }^{+}$(343).

5-Formylamino-3-(4-methoxyphenyl)-4-oxo-3,4dihydrothieno $[3,4-d]$ pyrida-zine-1-carboxylic acid ethyl ester 5b

Compound $\mathbf{5 b}$ was obtained as yellow crystals (method A: 30\%, method B, 2 min: 55%) mp 228$230{ }^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{57} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}(373.38)$: Calcd: C, 54.68; H, 4.05; N, 11.25. Found: C, 54.67; H. 4.11: $\mathrm{N}, 11.28 \%$. IR ($\mathrm{V} / \mathrm{cm}^{1}$): $3340(\mathrm{NH}), 1731$ (CO ester) $1690(\mathrm{CO})$ and $1678 \mathrm{~cm}^{-1}$ (ring CO), ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): $1.39\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$); $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$); $4.43\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.11(\mathrm{~m} .2 \mathrm{H}$, Aryl $\mathrm{H}-3,5) ; 7.49$ ($\mathrm{m}, 2 \mathrm{H}$, Aryl H-2, H-6); 8.02(s. 1H, thienyl H); 8.67(s, $1 \mathrm{H}, \mathrm{CHO}$): 11.72 ppm (s, 1H, NH). ms: M^{+}(373).

3-Formylaminothieno[3,4:3,4]benzo $[b]$ pyran-

4-one 6

Compound 6 was obtained as pale green crystals (method A: 52%, method B, $3 \mathrm{~min}: 89 \%$) mp 227$228^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}(245.25)$: Calcd: C, 58.77; H, 2.88; N. 5.71. Found: C, 58.79; H. 2.91; $\mathrm{N}, 5.74 \%$. IR $\left(\mathrm{v} / \mathrm{cm}^{-1}\right): 3345(\mathrm{NH}), 1693(\mathrm{CO})$ and $1679 \mathrm{~cm}^{-1}$ (ring CO), 'H NMR ($\delta \mathrm{ppm}$): 6.95-7.52 (m, 5H, Ar-H); 8.38 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$); 11.01 ppm (s , 1H, NH). ms: M^{+}(245).

N -Benzothizol-2-ylformamide 21

Compound 21 was obtained as green crystals (method A: 30%, method B, $3 \mathrm{~min}: 62 \%$) mp $165^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OS}$ (178.21): Calcd: C, 53.92; H, 3.39; N, 15.72. Found: C, 53.97; H, 3.40; N, 15.80%. ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): $7.14-7.68(\mathrm{~m}, 4 \mathrm{H}$, Ar$\mathrm{H}) ; 8.58$ (s, 1H, CHO) and $11.12 \mathrm{ppm}(\mathrm{s}, \mathrm{IH}, \mathrm{NH})$. ms : $\mathrm{M}^{+}(178)$.

N -(5-Phenyl-2H-pyrazol-3-yl)formamide 22

Compound 22 was obtained as beige crystals (method A: 14%, method B. $5 \mathrm{~min}: 35 \%$) mp 224$226{ }^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ (187.20): Calcd: C, 64.16; H, 4.85; N, 22.45. Found: C, 64.21; H, 4.89; $\mathrm{N}, 22.47 \%$. ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 6.43 (s, 1 H , pyrazol $\mathrm{H}-4)$; 7.34-7.79 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 8.21$ (s, 1H, CHO) $11.01(1 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ and $12.01 \mathrm{ppm}(1 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. ms: $\mathrm{M}^{+}(2 \mid 4)$.

N -(2H-[1, 2, 4]Triazol-3-yl)formamide 23

Compound 23 was obtained as beige crystals (method A: 25%, method B, 5 min: 45%) mp $254^{\circ} \mathrm{C}$.

Analysis for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}(126.12)$: Calcd.: C, 38.09; H , 4.80; N, 44.42. Found: C, 38.10; H, 4.81; N, 44.46\%. ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 8.3 (s, 1H . trizol H-3); 9.72(s, $1 \mathrm{H} . \mathrm{CHO}$); $10.09(1 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ and $12.7 \mathrm{ppon}(1 \mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH})$. ms: $\mathrm{M}^{+}(139)$.

General Procedure for the preparation of 9a, b and 10

Method A. A mixture of each of ($\mathbf{3 a}, \mathbf{b}, 4$) (0.1 mol) and N -phenylmaleimide (0.1 mol) was heated at $200^{\circ} \mathrm{C}$ for 1 hr , left to cool and triturated with ethanol the solid product, so formed, was collected by filtration and crystalized from ethanol.

Method B. A mixture of each of ($\mathbf{3 a}, \mathbf{b}, \mathbf{4}$) (0.1 mol) and N -phenylmaleimide (0.1 mol) was placed in the microwave oven and irradiated at 450 W for 15-28 mins then left to cool to room temperature, and the solid was collected and crystallized from ethanol.
Compound 9a. was obtained as green crystals (method A: 52%, method B, $15 \mathrm{~min}: 63 \%$) mp $185{ }^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}(439.42)$: Calcd: C, 68.33; H, 3.90; N, 9.56. Found: C, 68.10: H, 4.00; $\mathrm{N}, 9.650 \%$. IR ($\mathrm{v} / \mathrm{cm}^{-1}$): 1728 (CO cster) 1710, 1695 (CO) and 1642 (ring CO), 'H NMR (δ ppm): $1.43\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{4}\right), 4.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.16-7.76(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$) 8.09 (s, 1H, H-9); $9.01 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5)$ ${ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{ppm}$): $14.27\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 62.85\left(\mathrm{OCH}_{2}\right)$: 107.79. 110.12, 116.47, 125.94, 126.46, 128.35, $128.93,129.12,129.28,129.38,131.34,134.79$. $136.83,137.99,140.46,148.68,160.87$ (aromatic and hetcrocyclic carbon) and $162.91,165.96,168.17$, 198.20 (4 CO). $\mathrm{ms}: \mathrm{M}^{+}(439)$.

Compound 9b. was obtained as dark yellow crystals (method A: 58%, method B, $28 \mathrm{~min}: 67 \%$) mp $158{ }^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{2 n} \mathrm{H}_{2 n} \mathrm{~N}_{4} \mathrm{O}_{6}$ (469.13): Caked: C, 66.52; H. 4.08; N. 8.95. Found: C, 66.45; H, 4.17; N. 9.82\%. IR (v/cm ${ }^{-1}$): 1738 (CO ester) 1695 (CO) and 1642 (ring CO), ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 1.43 $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{4}\right): 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{4}\right) ; 4.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{3}\right)$; 7.02-7.52 (m, 9H, Ar-H); 8.08 (s, 1H, H-9); 9.03 ppm (s, 1H. H-5); ms: $\mathrm{M}^{+}(469)$.

Compound 10. was obtained as oily crystals (method A: 72%, method B, 28 min: 88%) mp $165^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ (341.07): Calcd: C, 73.90; H, 3.25; N, 4.10. Found: C, 73.87, H, 3.31;
$\mathrm{N}, 4.13 \%$. IR (v/cm ${ }^{-1}$): 1710 (ring CO) $1695 \mathrm{~cm}^{-1}$ (amide CO), ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 7.2-7.68 (m, 9 H , Ar-H), 7.99 (s, 1H, H-7), $8.50 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-11)$. ms: M^{+}(341).

Triethyl 5-amino-3, 4-dihydro-4-oxo-3-phenylphtha lazine-1,6,7-tricarboxylate 11

A mixture of $\mathbf{3 a}(0.1 \mathrm{~mol})$ and diethyl furnarate (0.1 mol) was placed in the microwave oven and irradiated at 450 W for 2 min , then left to cool to room temperature, and the solid was collected and crystallized from ethanol.

Componnd 11. was obtained as dark red crystals (52%), mp $228^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}$, (453.44): Calcd: C, 60.92; H, 5.11; N, 9.27. Found: C, $60.89 ; \mathrm{H}, 5.14 ; \mathrm{N}, 9.29 \%$. IR (v/cm ${ }^{-1}$): 3505 and $3320\left(\mathrm{NH}_{2}\right), 1745,1714,1710$ (ester CO) and 1673 (ring CO), ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6} \delta \mathrm{ppm}$): 1.19 $1.44\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ; 3.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 4.20-4.42$ ($\mathrm{m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$); $7.25-7.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 8.15 \mathrm{ppm}$ (s, 1H, H-8). ms: ($\mathrm{M}^{+}+1$) (454).

2, 5-Diphenyltetrahydrocyclobuta[1,5-c; 3,4-c ${ }^{\prime}$] dipyrrole-1,3,4,6-tetraone 24 and 2,5,8-Triphe-nylhexahydro-2,5,8-triazatrindene-1, 3, 4, 6, 7, 9. hexanone 25

Method A. N-phenylmaleimide was heated at $200^{\circ} \mathrm{C}$ for 1 hr , left to cool and triturated with ethanol the solid product, so formed, was collected by filtration and crystallized from ethanol.

Method B. N-phenylmaleimide (0.1 mol) was placed in the microwave oven and irradiated at 450 W for 5 mins , then left to cool to room temperature, and the solid was collected and crystallized from ethanol.

Compound 24. was obtained as pink crystals (method A: 52%, method B: 60%) mp $252^{\circ} \mathrm{C}$. Analy-
sis for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ (346.34): Calcd: C, 69.36; H , 4.07; N, 8.09. Found: C, 69.40; H, $4.09 ;$ N, 8.12%. ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): $3.64-3.66$ (m, 4H, H-cyclobutane) and 6.83-7.64 ppm (m, 10H, Ar-H). ${ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{ppm}$): 32.4 (cyclobutane carbon); 120.4, 124.1, 128.7 , 140.8 (aromatic carbon) 175.20 (CO). ms: M^{+}(346).

Compound 25. was obtained as beige crystals (method A: 50%, method B: 64%) mp $275^{\circ} \mathrm{C}$. Analysis for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ (519.50): Calcd: C, 69.36 ; $\mathrm{H}, 4.07$; N, 8.09 . Found: C, $69.39 ; \mathrm{H}, 4.10 ; \mathrm{N}, 8.10 \%$. ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$): 2.88-3.03 (m, 6H, H-cyclohexane) and 6.86-7.67 ppm (m, 15H, Ar-H). ${ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{ppm}$): 29.4 (cyclohexane carbon); 120.4, 124.1, $128.7,140.8$ (aromatic carbon) $173.80(\mathrm{CO})$. ms: M^{+}(519).

REFERENCES

1. Abu-Shanab, F. A.; Wakefield, B. J.; Al-Omªn, F.; Abdel Khalik, M. M. and Elnagdi, M. H. J. Chem. Res. (s) 1995, $488(\mathrm{~m}) 2924$.
2. Al-Awadi, H.; Al-Omran, F.; Elnagdi, M. H.; Infantes, L. C.; Foces-foces, Jagerovic, N. and Elguero, J. Tetrahedron 1995, 51, 12745.
3. Nyiondi-Bonguen, E.; Sopbue Fondjo, E.; Fomum T.; and Dopp D. J. Chem. Soc. Perkin trans / 1994. 2191.
4. Erian, A. W.; Hafez, E. A. A.; Darwish E. S. and Elnagdi, M. H. Can. J. Chem. 1998, 76, 1038.
5. Al-Omran, F.; Al-Awadi, N.; Elassar, A. A. and ElKhair, A. A. J. Chem. Res. 1996(s), $20(\mathrm{~m}), 237$.
6. Caddick, S. Tetrahedron 1995, 51. 10403.
7. Deia Hoz, A.; Diaz-Ortis, A.; Moreno A. and Langa, F. Eur. J. Org. Chem. 2000, 65, 3659.
8. Al-Zaydi, Kh. M.; Al-Shiekh, M. A. and Hafez, E. A. J. Chem. Res. $\mathbf{2 0 0 0}(\mathrm{s}), 13(\mathrm{~m}), 0173$.
