• Title/Summary/Keyword: Oled

Search Result 1,535, Processing Time 0.032 seconds

630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors

  • Mo, SangJoon;Chung, Phil-Sang;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.485-495
    • /
    • 2019
  • Photobiomodulation (PBM) using organic light emitting diodes (OLEDs) surface light sources have recently been claimed to be the next generation of PBM light sources. However, the differences between light emitting diodes (LEDs) and OLED mechanisms in vitro and in vivo have not been well studied. In vivo mouse models were used to investigate the effects of OLED irradiation on cellular function and cutaneous wound healing compared to LED irradiation. Mice in the LED- and OLED-irradiated groups were subjected to irradiation with 6 J/㎠ LED and OLED (630 nm), respectively, for 14 days after wounding, and some mice were sacrificed for the experiments on days 3, 7, 10, and 14. To evaluate wound healing, we performed hematoxylin-eosin and Masson's trichrome staining and quantified collagen density by computerized image analysis. The results showed that the size of the wound, collagen density, neo-epidermis thickness, number of new blood vessels, and number of fibroblasts and neutrophils was significantly influenced by LED and OLED irradiation. The tissue levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α were investigated by immunohistochemical staining. LED and OLED irradiation resulted in a significant increase in the tissue IL-β and IL-6 levels at the early stage of wound healing (P < 0.01), and a decrease in the tissue TNF-α level at all stages of wound healing (P < 0.05), compared to the no-treatment group. The expression levels of the genes encoding vascular endothelial growth factor and transforming growth factor-beta 1 were significantly increased in LED and OLED-irradiated wound tissue at the early stage of wound healing (P < 0.01) compared to the no-treatment group. Thus, OLED as well as LED irradiation accelerated wound healing by modulating the synthesis of anti-inflammatory cytokines and the expression levels of genes encoding growth factors, promoting collagen regeneration and reducing scarring. In conclusion, this suggests the possibility of OLED as a new light source to overcome the limitations of existing PBMs.

The Effect of Multilayer Passivation Film on Life Time Characteristics of OLED Device (OLED소자의 수명에 미치는 다층 보호막의 영향)

  • Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Multilayer passivation film on OLED with organic/inorganic hybrid structure as to diminish the thermal stress and expansion was researched to protect device from the direct damage of $O_2$ and $H_2O$ and improve life time characteristics. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The films consist of ITO(150 nm)/ELM200_HIL(50 nm)/ELM002_HTL(30 nm)/$Alq_3$: 1 vol.% Rubrene(30 nm)/$Alq_3$(30 nm) and LiF(0.7 nm)/Al(100 nm) which were formed in that order. Using LiF/$SiN_x$ as a buffer layer was determined because it significantly improved life time characteristics without suffering damage in the process of forming passivation film. Multilayer passivation film on buffer layer didn't produce much change in current efficiency, while the half life time at 1,000 $cd/m^2$ of OLED/LiF/$SiN_x$/E1/$SiN_x$ was 710 hours which showed about 1.5 times longer than OLED/LiF/$SiN_x$/E1 with 498 hours. futhermore, OLED/LiF/$SiN_x$/E1/$SiN_x$/E1/$SiN_x$ with 1301 hours showed about twice than OLED/LiF/$SiN_x$/E1/$SiN_x$ which demonstrated that superior characteristics of life time was obtained in multilayer passivation film. Through the above result, it was suggested using LiF/$SiN_x$ as a buffer layer could reduce the damage from the difference of thermal expansion coefficient in OLED with protective films, and epoxy layer in multilayer passivation film could function like a buffer between $SiN_x$ inorganic layers with relatively large thermal stress.

Photo-Induced Memory of an OLED in the presence of thio-Michler's ketone

  • Enokida, Toshio;Gwon, Tae-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.281-284
    • /
    • 2004
  • Photo-induced memory effect of an organic light-emitting diode(OLED) composed of a hydrazone-derivative(DBAH) dispersed in bis-phenol-A type polycarbonate polymer(PCA) in the presence of thio-Michler's ketone, was investigated by the measuring of the current density and luminance at the various conditions. After the light exposure, the current of the OLED was decreased approximately one order, and the luminance of the OLED also decresed. This memory effct was erasable by heating the OLED to the temperature higher than the glass transition temperature(Tg). As shown in this result, we found the memory effect was erased by heating and returned to its original state in the hole injecting layer(HIL) of the OLED. A series of these phenomena was suggested the possibility of the application to the imaging plate.

  • PDF

A study on flexible OLED employing cellulose paper as a substrate (셀룰로오스 종이를 기판으로 하는 플렉시블 OLED소자)

  • Min, Sang-Hong;Kang, Min-Ki;Kim, Il-Young;Kim, Hyun-Su;Kim, Chang-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1443-1444
    • /
    • 2011
  • 플렉시블 OLED 소자에서 주요한 역할을 하는 기판은 디스플레이의 성능, 신뢰성과 가격을 결정한다. 플렉시블 OLED소자의 기판으로는 PET, PC, PES, PEN과 같은 고분자 계열의 기판이 많이 사용되고 있지만 거칠기 등의 문제가 있는 것으로 알려져 있다. 본 논문에서는 셀룰로오스 종이를 사용하는 투명 플렉시블 OLED 소자를 개발하였다. 본 논문에서는 개발한 셀룰로오스 종이의 표면 거칠기는 $3.1{\AA}$이었으며, 투과도는 97.6%로서 PET기판 보다 우수한 특성을 보여주었다. 셀룰로오스 종이를 기판위에 양극으로 Ni을 이용하는 녹색 발광 플렉시블 OLED소자를 구현하였다.

  • PDF

Low Power Image Enhancement Algorithm for OLED Displays (OLED 디스플레이를 위한 저전력 영상 화질 개선 기법)

  • Lee, Chul-Woo;Lee, Chul;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.392-393
    • /
    • 2010
  • 본 논문에서는 최근 모바일 디스플레이로 각광 받고 있는 OLED 디스플레이를 위한 영상 화질 개선 기법을 제안한다. OLED 디스플레이는 영상의 화소값을 개별적으로 조정함으로써 전력 소모를 조정할 수 있다. 이러한 OLED의 특성과, 영상 화질 개선의 대표적인 기법인 히스토그램 수정 기법을 이용하여 전력소모를 최소화 하는 영상 화질 개선 기법을 제안한다. 제안하는 기법에서는 먼저 OLED 디스플레이의 소모 전력을 추정하고, 입력 영상의 히스토그램 수정을 통하여 얻어지는 전달함수를 이용하여 영상을 변환한다. 모의실험을 통하여 영상을 표현하기 위한 소모 전력이 효과적으로 감소함을 확인한다.

  • PDF

Change of Internal Resistance of OLED Devices during Operation

  • Lee, Soon-Seok;Hwang, Hak-Eun;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1443-1446
    • /
    • 2007
  • The luminance and operating voltage were measured during OLED operation for the purpose of analyzing the efficiency and change of internal resistance. The half lifetime of OLED was affected by degradation of OLED due to heat generated by ambient temperature and self heating. The operating voltage constantly increased due to the increase of internal resistance. The half lifetime of OLED driven by constant current source was found to be longer than that of the OELD driven by constant voltage and the reasons were clearly explained in this paper.

  • PDF

Fabrication of Charge-pump Active-matrix OLED Display Panel with 64 ${\times}$ 64 Pixels

  • Na, Se-Hwan;Shim, Jae-Hoon;Kwak, Mi-Young;Seo, Jong-Wook
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel using the charge-pump (CP) pixel addressing scheme was fabricated, and the results show that it is applicable for information display. A CP-OLED panel with 64 ${\times}$ 64 pixels consisting of thin-film capacitors and amorphous silicon Schottky diodes was fabricated using conventional thin-film processes. The pixel drive circuit passes electrical current into the OLED cell during most of the frame period as in the thin-film transistor (TFT)-based active-matrix (AM) OLED displays. In this study, the panel was operated at a voltage level of below 4 V, and this operation voltage can be reduced by eliminating the overlap capacitance between the column bus line and the common electrode.

Development of IGZO TFTs and Their Applications to Next-Generation Flat-Panel Displays

  • Hsieh, Hsing-Hung;Lu, Hsiung-Hsing;Ting, Hung-Che;Chuang, Ching-Sang;Chen, Chia-Yu;Lin, Yusin
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.160-164
    • /
    • 2010
  • Organic light-emitting devices (OLEDs) have shown superior characteristics and are expected to dominate the nextgeneration flat-panel displays. Active-matrix organic light-emitting diode (AMOLED) displays, however, have stringent demands on the performance of the backplane. In this paper, the development of thin-film transistors (TFTs) based on indium gallium zinc oxide (IGZO) on both Gen 1 and 6 glasses, and their decent characteristics, which meet the AMOLED requirements, are shown. Further, several display prototypes (e.g., 2.4" AMOLED, 2.4" transparent AMOLED, and 32" AMLCD) using IGZO TFTs are demonstrated to confirm that they can indeed be strong candidates for the next-generation TFT technology not only of AMOLED but also of AMLCD (active-matrix liquid crystal display).

Influence of Substrate Thermal Conductivity on OLED Lifetime

  • Chung, Seung-Jun;Lee, Jae-Hyun;Jeong, Jae-Wook;Kim, Jang-Joo;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1026-1029
    • /
    • 2008
  • Temperature increase during OLED operation can significantly degrade the device lifetime. By using top-emission OLEDs fabricated on glass and silicon substrates that have different thermal conductivities, we found that efficient heat dissipation and corresponding lifetime improvement can be obtained by making a direct contact between the OLED anode and the high thermally-conductive silicon substrate. We describe substrate-dependent OLED heat dissipation behavior and OLED lifetime improvement by using infrared camera images and constant current stress test methods.

  • PDF

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF