• Title/Summary/Keyword: Oil pump

Search Result 376, Processing Time 0.025 seconds

Optimal Design of Tooth Profile for High-Efficiency Gerotor Oil Pump (지로터 오일 펌프의 성능 향상을 위한 치형의 최적 설계)

  • Kim Jae Hun;Park Joon Hong;Jung Sung Yuen;Son Jin Hyuk;Kim Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.28-36
    • /
    • 2005
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications, which are highly accepted by designers. Especially the pump is an essential machine element of an automotive engine to feed lubricant oil. However, related industries do not have necessary technology to design and optimize the pump and paid royalties of rotor profile on an advanced country. Also, gerotor pumps with unsettled design parameters have not been sufficiently analyzed from a theoretical view of design. Therefore, it is still very difficult for the pump designer and manufacturer to decide the specifications for the required gerotor pump by users. In this study, the design optimization has been carried out to determine the design parameters that maximize the specific flow rate and minimize the flow rate irregularity. Theoretical analyses and optimal design of the gerotor oil pump have been performed by mathematical base, numerical method and knowledge of kinematics. An automated design system of the tooth profile has been developed through Auto LISP language and CAD method considering various design parameters. Finally, an optimally designed model for a general type of a gerotor pump has been generated and experimentally verified for the pump performances.

Design and Implementation of Oil Pump Control Systems Driven by a Brushless DC Electric Motor (BLDC 모터로 구동되는 오일 펌프 제어 시스템의 설계 및 구현)

  • Kwak, Seong-Woo;Kim, Hyung-Soo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • In this paper, we address the problem of designing and implementing an oil pump control system driven by a brushless DC (BLDC) motor. The proposed oil pump plays the role of providing fuel to the engine clutch and transmission of hybrid vehicles. Main consideration is given to enhancing response feature and accuracy of the oil pump by simplifying the controller that is driven by a BLDC motor under PWM voltage control, which is a standard control method for BLDC motors. The proposed control scheme also helps to increase efficiency and reliability of the oil pump system. To validate the performance of the proposed system, we conduct experiments on BLDC motor speed control and oil pump operations.

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

An Experimental Study on Pulsation Noise Reduction of Power Steering Oil Pump (Power Steering Oil Pump의 맥동소음 저감에 관한 실험적 연구)

  • 안세진;김명환;박진형;정의봉;유승근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.395-400
    • /
    • 2003
  • Power steering oil pump is generally used to support the power to steering system of most kinds of vehicle. The noise caused by power steering ell pump make passenger to be uncomfortable, because its frequency is higher than that is produced by engine. In this paper, the field test of real car was carried out to analyze the phenomenon of the pump noise, and the lab test was also performed to survey the dynamic characteristics of pump assembly. The results of the series of tests show that frequency range of 600-800㎐ should be dealt with to reduce the pump noise. After four cases of design changes were carried out to actually reduce the noise and tested in condition of partial assembly. Some improvement can be gotten from a certain design change.

  • PDF

Development of an Integrated System for Automated Design of Gerotor Oil Pump (지로터 오일 펌프용 통합적 설계 자동화 시스템 개발)

  • Kim, Jae-Hun;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.88-96
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. Especially the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of the internal lobe pump which is a particular type of positive displacement pump. The main components of the pump are rotors; usually the outer rotor profile is characterized by lobes with circular shape, while the inner rotor profile is determined as conjugate as the outer rotor profile. For this reason the topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to avoid cusp and loop between rotors. And the integrated system which is composed of three main modules has been developed through AutoLISP & Visual Basic and CAD considering various design parameters. It generates automatically an designed model for a general type of a gerotor pump and allows us to calculate two performances indexes commonly used for the study of positive displacement pumps: the flow rate and flow rate irregularity. Results obtained using the system enable the designer and manufacturer of oil pump to be more efficient in this field.

Flow Analyses Inside Jet Pumps Used for Oil Wells

  • Samad, Abdus;Nizamuddin, Mohammad
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Jet pump is one type of artificial lifts and is used when depth and deviation of producing wells increases and pressure depletion occurs. In the present study, numerical analysis has been carried out to analyze the flow behavior and find the performance of the jet pump. Reynolds-averaged Navier Stokes equations were solved and k-${\varepsilon}$ turbulence model was used for simulations. Water and light oil as primary fluids were used to pump water, light oil and heavy oil. The ratios of area and length to diameter of the mixing tube were considered as design parameters. The pump efficiency was considered to maximize for the downhole conditions. It was found that the increase in viscosity and density of the secondary fluid reduced efficiency of the system. Water as primary fluid produced better efficiency than the light oil. It was also found that the longer throat length increased efficiency upto 40% if light oil was used as primary fluid and secondary fluid viscosity was 350 cSt.

Numerical Simulation in the IC Engine Lubricating Gerotor Oil Pump (엔진 윤활용 제로터 오일펌프 유동해석)

  • Jo Sok-Hyun;Park Jae-In;Nam Kyung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.1019-1025
    • /
    • 2006
  • Numerical simulations were conducted on the gerotor type oil pump. Three oil pump models having different port and groove shape were considered. Firstly, two original models (baseline & variant.1 model) were simulated in order to validate the accuracy of the simulation results and to better understand the flow characteristics in the pump. It was found that the cavitation phenomenon as well as the teeth tip leakage is most important parameter on the pump performance. Based on the simulation results of the original models, final model (variant.2 model) which has improved port shape and pressure relief valve is suggested to enhance pump performance and to reduce driving torque. The volumetric efficiency and the hydraulic torque of the Variant.2 model is improved 4% and reduced 6.1% each at 2000RPM in experiment.

Oil Pump Rotor without Machining Treatment

  • Kanou, Yuki;Sasaki, Masao;Hosono, Katsuaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.752-753
    • /
    • 2006
  • Oil Pump rotor is essential parts for automobile and, it is consisted of drive rotor and driven rotor in general. These parts are requested different properties according to environment. There are 2 types of Oil Pump rotor according to its usage. One is used for electric system, and the other is used for shaft-driven system. Especially, high precision and functionality is required in electric pump, and cost reduction is required in shaft-drive pump without slowing down its performance. This paper is mainly describing about the non-machine treated shaft-drive pump, based on the trial sample producing process.

  • PDF

The Optimization Study on the Test Method of Remanufactured Power Steering Oil Pump by Using FMEA (FMEA를 활용한 재제조 파워스티어링 오일펌프 시험법에 대한 최적화 연구)

  • Seo, Youngkyo;Jung, Dohyun;Yu, Sangseok;Rha, Wanyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.90-98
    • /
    • 2016
  • Currently government certified test method for an automobile remanufactured products is insufficient. Thus many automotive parts in the remanufacturing market are lacking proper evaluation criteria and production of defective products are causing customer dissatisfaction. In this paper a power steering oil pump, which requires stringent manufacturing standards, is studied by the failure mode and effect analysis approach. The research suggested that the test criteria such as discharge flow characteristic test, tightness test, pulley run-out test, pressure switch operation test, low temperature test and rotation pressure durability test should be performed to evaluate the reliability of remanufactured power steering oil pumps. As a result of tests, the performance of remanufactured power steering oil pump satisfied the evaluation criteria of pressure switch operation test and low temperature test. However, the remanufactured power steering oil pump failed to satisfy the evaluation criteria on discharge performance test, tightness test and pulley run-out test. These performance evaluation tests proved the necessity of standard process for the remanufactured power steering oil pump.