Development of piston contact mechanism for radial piston pump

레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발

  • 함영복 (한국기계연구원 그린환경에너지연구본부) ;
  • 차재곤 (한국기계연구원 그린환경에너지연구본부) ;
  • 김대명 (한국기계연구원 그린환경에너지연구본부) ;
  • 공태우 (한국기계연구원 그린환경에너지연구본부) ;
  • 윤소남 (한국기계연구원 그린환경에너지연구본부) ;
  • 안국영 (한국기계연구원 그린환경에너지연구본부) ;
  • 권병수 (광신기계공업(주))
  • Received : 2009.08.31
  • Published : 2010.03.01

Abstract

This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

Keywords

References

  1. F. Laurencelle, Z. Dehouche, F. Morin, J. Goyette, "Experimental study on a metal hydride based hydrogen compressor", Journal of Alloys and Compounds 475, pp. 810-816, 2009. https://doi.org/10.1016/j.jallcom.2008.08.007
  2. 함영복 외 3인, "메탈 다이어프램 수소압축기의 오일공급 펌프설계에 관한 연구", 한국유공압시스템학회 2007추계학술대회논문집, pp. 121-126, 2007.
  3. 함영복 외 4인, "레이디얼 피스톤 펌프의 토출특성에 관한 연구", 한국유공압시스템학회 2009춘계학술대회논문집, pp. 204-208, 2009.
  4. Pasquale Corbo, Fortunato Migliardini, Ottorino Veneri, "Experimental analysis management issues of a hydrogen fuel cell system for stationary and mobile application", Energy Conversion and Management, Vol. 48, No. 8, pp. 2365-2374, 2007. https://doi.org/10.1016/j.enconman.2007.03.009
  5. M. Golben, D.H. DaCosta, "Advanced thermal hydrogen compression", Proceedings of the 2001 DOE Hydrogen Program Review, NREL/CP -570-30535, 2001.
  6. Zhan Fenga et al., "Metal hydride compressor and its application in cryogenic technology", Journal of Alloys and Compounds 231, pp. 907-909, 1995. https://doi.org/10.1016/0925-8388(95)01781-X
  7. E.P. Da Silva, "Industrial prototype of a hydrogen compressor based on metallic hydride technology", International Journal of Hydrogen Energy, Vol. 18, Issue 4, pp. 307-311, 1993. https://doi.org/10.1016/0360-3199(93)90044-B
  8. A. Rodríguez Sánchez, H.P. Klein and M. Groll, "Expanded graphite as heat transfer matrix in metal hydride beds", International Journal of Hydrogen Energy 28, pp. 515-527, 2003. https://doi.org/10.1016/S0360-3199(02)00057-5