• Title/Summary/Keyword: Oil binder

Search Result 40, Processing Time 0.027 seconds

THE INVESTIGATION FOR THE EFFECT 01 THE SOLUBILITY PARAMETER BETWEEN OIL BINDER AND SOLVENT TO THE PRODUCT QUALITY IN THE WET TYPE BACK INJECTION PRESS PROCESS.

  • Y, Tae-Young;K, Jong-Kuy;L, Joo-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.105-110
    • /
    • 1998
  • In the make-up product, Eye-shadow products have several purposes of enhancing product quality such as providing the beauty (variation of shape, clean appearance), feeling, continuity and adhesion. In this paper, newly developed wet type back injection press process is introduced so as to increase higher value products which providing various the beauty. The solvent takes an essential role to provide the fluidity of the powder bulk during the pressed-process of wet type pressed product. In this study, the effect of solvent in the oil binder was investigated, And the higher quality condition of the wet type pressed product was built to apply cosmetic preparation. Firstly, the system was designed powder phase as non treated pigment. The oil binder phase is categorized as hydrocarbons(Mineral oil, Squalane), Silicones(Methicone, Dimethicone ), esters (Octyldodecanol, Octyl Dodecyl Myristate). The solvent phase used was C 7-8 isoparaffin and Isopropyl Alcohol. The interaction of oil binder and solvent is investigated by measuring mass of final oil binder and the each solubility parameter. It was found that the higher the solubility the higher the degree of change in the final composition of the oil binder. In order to maintain the quality of the final product, the solvent used in pressed-process should be hydrophobic with oil binder.

  • PDF

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes (실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄)

  • Lee, Yong Hun;Kim, Eunji;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.607-612
    • /
    • 2021
  • Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.

Evaluation of the Characteristics of Asphalt Release Agents (국내 아스팔트 릴리스 에이전트의 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.13-25
    • /
    • 2007
  • Viscosity, adhesion and cohesion of asphalt binder are very important characteristics in asphalt pavement. However, these characteristics can cause some problems such as inaccurate amount of asphalt mixture, reduction of asphalt content and loss of workability during asphalt pavement construction. Asphalt release agent has been used to solve these problems. Diesel oil and vegetable oil are generally used as an asphalt release agent in Korea. However, these agents have been criticized from environmental and binder integrity reasons. Therefore, this study evaluated the characteristics of asphalt release agents including diesel oil, vegetable oil and two emulsion type oils. From the study, it was found that the diesel oil resolved the binder within ten minutes and vegetable oil stripped the binder from mixture within one hour after contacting with asphalt mixture. And also, from the test for estimating the application cycle of asphalt release agent, it appears that diesel oil and vegetable oil should be applied to construction equipments every time in their uses. However, diesel oil and vegetable oil showed a good performance as a lubricant for detaching the asphalt mixtures from the truck bed.

  • PDF

Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block (석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향)

  • Kim, Kyung Hoon;Lee, Sangmin;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.432-436
    • /
    • 2017
  • Carbon blocks were prepared by compression molding process using the mixture of isotropic cokes and binder pitches, which were reformed with different ${\beta}$-resin contents from pyrolysis fuel oil. Physical and chemical properties and also thermal behavior of binder pitches were investigated through elemental analysis, FT-IR and thermogravimetric analysis, respectively. The adhesion of binder pitches to isotropic coke particles was evaluated from SEM images of the fracture surface of carbon blocks. From these results, it is shown that the adhesion between the cokes and binder was enhanced by increasing the ${\beta}$-resin content of binder pitches. The density of the carbon block after carbonization also increased from 1.325 to $1.383g/cm^3$ by increasing the ${\beta}$-resin content of binder pitches from 1.4 to 20.1%.

Low Temperature Plasma Treatment of Linseed Oil for Immobilization of Silica as Flame-resistant Material (방염용 실리카의 고정화를 위한 아마인유의 저온플라즈마처리)

  • Seo, Eun-Deock
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.313-320
    • /
    • 2012
  • For the preparation of hardened films which can be applied as a binder for flame-resistant materials such as silica, linseed oil was subjected to a low temperature plasma treatment with argon, or oxygen gas. The film was produced much faster than so-called drying of oil in air. The SEM analysis for silica particles embedded in the hardened film after plasma treatment showed that the silica particles were immobilized on substrate and were evenly dispersed. The FT-IR spectral analysis for the plasma-treated linseed oil films demonstrated that the radicals which were formed during the plasma treatments caused the linseed oil to be cross-linked, and the plasmas attacked carbon chains of the oil randomly without focusing on specific vulnerable bonds such carbon double and carbonyl bonds intensively unless exposure times of the plasmas were prolonged too much, while the cross-linking of the air-dried film was considered to occur at the well-known typical sites, i.e., carbon-carbon double bond and ${\alpha}$-methylene carbon. Burning times, as a measure of flame/fire resistance, of silica-filled cellulose substrates, increased with increasing contents of silica.

Effects of Cosmetic Pigments on the Bactericidal Activities of Parabens (파라벤류의 방부력에 대한 화장품용 안료의 영향)

  • Cho, Wan-Goo;Lee, Young-Hwa;Hwang, Seong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • In this study, we evaluate the anti-microbiological activity of paraben in eye shadows that are composed of pigments and oil binders using various analytical methods and microbiological tests. Paraben does not show the microbiological activity properly when it was used with Nylon SP$^{(R)}$ 10, Talc RF SSA$^{(R)}$, OMC Talc AS$^{(R)}$ and $BaSO_4$. In the test of fungi, Nylon SP$^{(R)}$ 10 causes the decrease of microbiological activity regardless of the type of oil binders. The pigment of Mango violet also causes the decrease of microbiological activity when ester oil binder was used. Regardless of the type of oil binder, samples containing nylon SP 10, 0.15% of methyl paraben and 0.05% of propyl paraben had not been able to maintain microbiological activity only if the concentration of parabens were increased. Trace amounts of metal ions present in pigments reduced the activity of preservatives by inactivation of hydroxyl group of paraben. It is thought that swollen nylon SP 10 in ester oil increase the absorption or interaction of parabens and swollen nylon powder causes the inactivation of paraben.

Fundamental Properties of High Volume Fly Ash Concrete due to Waste Oil Addition (폐유지류 혼입에 따른 플라이애시 다량 치환 콘크리트의 기초적 특성)

  • Kim, Jun-Ho;Hwang, Geum-Gwang;Jo, Man-Gi;Heo, Young-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.67-69
    • /
    • 2012
  • This paper is to investigate the effect of waste oil on the fundamental properties of high volume fly ash concrete depending on W/B and waste oil contents. Test results reveals that the use of waste oil resulted in an increase of slump and a decrease of air contents due to the presence of emulsion in waste oil. And it is found that the addition of waste oil does not affect the strength development of the concrete significantly.

  • PDF

Photoelectrochemical Properties of $TiO_2$ Electrodes Prepared Using Chemical Functionalized Binders

  • Song, Yongwhan;Kim, Sangki;Yang, Jaechang;Park, Junho;Kim, Myoungsoo;Gu, Halbon;Park, Kyunghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.60.1-60.1
    • /
    • 2010
  • Chemically functionalized plant oils such as acrylated epoxidized soybean oil (AESO) and maleinized acrylated epoxidized soybean oil (MAESO) were used as new bio-based binders for $TiO_2$ electrodes of dye-sensitized solar cells (DSSC). More porous networks and larger porosities were fabricated on the $TiO_2$ films using plant oil binders due to the larger number of functionalities, in comparison with the film using polyethylene glycol (PEG). The charge-transfer resistance in the $TiO_2$ films was considerably shrunk due to the reduced impurity states. The short circuit photocurrent (Isc) and the open circuit photovoltage (Voc) of the cell using plant oil binders increased and the conversion efficiency improved significantly.

  • PDF

Strength and Autogenous Shrinkage of High Strength Mortar Using Water Substituting Liquid

  • Han, Min-Cheol;Lee, Dong-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.538-546
    • /
    • 2011
  • This paper is to experimentally investigate the strength and autogenous shrinkage of high strength mortar with the 20 % of water?binder ratio(W/B). In this study, the water substituting liquid(WSL) was used including gasoline, light oil, lamp oil, edible oil, HFE, ethanol, methanol and acetone in order to explore changes in strength and autogenous shrinkage depending on WSL type and replacement. For fresh properties, the replacement of WSL did not affect the fluidity of mortar mixtures considerably, except for ethanol and methanol. However, the replacement of WSL resulted in a slight decrease in flexural and compressive strength. For autogenous shrinkage, the replacement of WSL led to reduce autogenous shrinkage, and especially, the replacement of edible oil led to reduce autogenous shrinkage significantly due to saponification between edible oil and cement.

Permeability and abrasion resistance of concretes containing high volume fine fly ash and palm oil fuel ash

  • Homwuttiwong, S.;Jaturapitakkul, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • In this paper, compressive strength, water permeability and abrasion resistance of concretes containing high volume fine fly ash (FFA) and fine ground palm oil fuel ash (GPA) were studied. Portland cement type I was replaced with FFA and GPA at dosages up to 70% by weight of binder. Ground river sand (GRS) was also used to replace Portland cement in order to indicate the level of filler effect. Results indicated that FFA was slightly more reactive than GPA. The replacement of 40-70% of FFA produced concretes with compressive strength, permeability and abrasion resistance comparable to those of normal concretes. The incorporation of GPA slightly reduced the performances of concretes as compared to those of FFA concretes. The reduction of Portland cement was partly compensated by the increase in pozzolanic activity of the fine fly ash and palm oil fuel ash and thus enabled the large replacement levels.