• Title/Summary/Keyword: Oil and gas

Search Result 2,000, Processing Time 0.039 seconds

Analyzing of the Essential Oil Chemical Constituents in Artemisia lavandulaefolia and its Pharmacological Property on Antibacterial Activity

  • Kim, Kyong-Heon;Kim, Baek-Cheol;Lee, Hwa-Jung;Jeong, Seung-Il;Kim, Hong-Jun;Ju, Young-Sung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2004
  • Objective: The aim of this work is to investigate the antibacterial activity of the essential oil obtained from Artemisia lavandulaefolia (A. lavandulaefolia), as the development of microbial resistance to antibiotics make it essential to constantly look for new and active compounds effective against pathogenic bacteria. Method: The aerial parts of A. lavandulaefolia (1 kg) were subjected to steam distillation for 3 h, using a modified Clevenger type apparatus in order to obtain essential oil. Diethyl ether was the extracting solvent kept at 25?. The essential oil were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The essential oil and the composition were tested for antimicrobial activities against 15 different genera of oral bacteria. Ninety-nine compounds accounting for 94.74$\%$</TEX> of the oil were identified. The main compounds in the oil were 1,8-cineole (5.63$\%$), yomogi alcohol (4.49$\%$), camphor (4.92$\%$), a-caryophyllene (16.10$\%$), trans-a-famesene (5.09$\%$), a-terpineol (3.91$\%$), borneol (5.27$\%$), cis-chrysanthenol (6.98$\%$), and a-humulene oxide (3.33$\%$). The essential oil and its compounds were tested for antimicrobial activity against 10 different genera of oral bacteria. Conclusion: The essential oil of A. lavandulaefolia exhibited considerable inhibitory effects against all obligate anaerobic bacteria (MICs, 0.025 - 0.05 ㎎/ml) tested, while their major compounds demonstrated various degrees of growth inhibition

  • PDF

A Fault Diagnosis of Oil-Filled Power Transformers Using Dissolved Gas Analysis (유중 가스 분석법을 이용한 전력용 유입 변압기의 고장 진단)

  • Yoon, Yong-Han;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.952-954
    • /
    • 1998
  • This paper presents an artificial neural network approach to diagnose and detect faults in oil-filled power transformers based on dissolved gas analysis. The proposed algorithm is used to detect faults with or without cellulose involved. Several neural network topologies have been considered. Good diagnosis accuracy is obtained with the proposed approach.

  • PDF

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

A Study on the Variation of Physical & chemical Properties with Refining treatment and Additive mixture for Marine Fuel Oil (선박연료유의 정제처리 및 첨가제 혼합에 따른 물리.화학적 특성 변화에 관한 연구)

  • Han, Won-Hui;Nam, Jeong-Gil;Lee, Don-Chool;Park, Jeong-Dae;Kang, Dae-Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.291-297
    • /
    • 2006
  • Recently it is a tendency that the use of the heavy fuel oil is investigated even from the middle&small class vessel in order to reduce the operating cost of vessel caused by with rise of international gas price. In this study, analyzed the physical & chemical properties and examined the effect of refining treatment and a fuel oil additive for MF30 fuel oil which is a mixture fuel oil mixed M.G.O and the heavy oil MF380 use to be possible in the middle&small class vessel. As a results, the effects of two of pre-refinery treatment methods as centrifugal purifier and heating & homogenizing system(M.C.H) are some feeble, but the pour point and the flash point came to be low more or less. The effect of property improvement which is caused by with the fuel oil additive did not appear positively.

  • PDF

The Effect of Base Oil Composition on Electronic Insulating Oil's Performances (윤활기유의 조성이 전기절연유의 성능 및 특성에 미치는 영향)

  • 문우식;전정식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.181-189
    • /
    • 1998
  • In order to investigate the effect of base oil composition on the electronic insulating oil's performances, an experimental study has been conducted using different oils. Owing to their properties, like lower pour point and gas absorbing, naphthenic base oils are used more often than paraffmic base oils for the electronic insulating oil application. Naphthenic and paraffinic base oils are significantly different in their aromatic hydrocarbon content. In this paper, PXE(para xylyl ethane), LAB(linear alkylbenzene), C13 aromatic hydrocarbon mixture and C17 aromatic hydrocarbon mixture are investigated regarding their influence on insulating oil's performances. According to present study, breakdown voltage decreased with increasing aromatic lydrocarbon content in a deep dewaxed paraffmic base oil. However, any changing in the dissipation factor was not recognizable at small treated level. Furthermore, the volume resistance was not influenced by aromatic hydrocarbon content. The gassing tendency was found as a highly sensible property, changing with treating aromatic hydrocarbons. The higher benzene ring content in the hydrocarbon, the better gassing tendency.

  • PDF

Changes of Properties and Gas Components according to Accelerated Aging Test of Vegetable Transformer Oil (식물성 절연유의 가속열화에 따른 주요 성분 및 물성 변화)

  • Lee, Donmin;Lee, Mieun;Park, Cheonkyu;Ha, Jonghan;Park, Hyunjoo;Jun, Taehyun;Lee, Bonghee
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.18-26
    • /
    • 2016
  • Mineral oil is the most widely used for electrical transformer, though some factors should be considered such as their environmentally harmfulness when it spill and low flash point. To cover these disadvantages, vegetable oil has developed because of its high biodegradability and thermal stability. However, it is necessary that many studies should conduct to reveal the detailed impacts of long-term operation as transformer oil. In this paper, we applied the accelerated aging test which simulate the real transformer circumstances using insulation paper, coil, steel at $150^{\circ}C$, which is higher than normal operation, for 2 weeks. To figure out the oxidation characteristics between mineral oil and vegetable oil test major properties and components such as total acid number, dielectric breakdown and dissolved gas components during that period. As a result of these tests, we found that vegetable oil has higher electric insulation ability than mineral oil though poor total acid number by hydrophile property. Vegetable oil also kept its thermal stability under the given circumstances.

The Relation between the Return Rate and the Volatility of Oil Market and Natural Gas Market : Focusing on the Market of US and EU (석유시장과 천연가스시장의 수익률 및 변동성 간의 관계 : 미국과 유럽 시장을 중심으로)

  • Kim, Young-Duk;Lee, Dong-Woo
    • International Area Studies Review
    • /
    • v.14 no.1
    • /
    • pp.99-119
    • /
    • 2010
  • This study explores the natural gas market and the oil market in the U.S. and the European oil market. It focuses on two kinds of analyses; one is to confirm whether there is the predictive power between spot and futures within homogeneous commodity market(or inter-heterogeneous commodity market) through Granger-causality test in terms of the return rate and the volatility. The other is to examine the spot price stabilizing effect of futures price through regression analysis. When it comes to the predictive power of inter-commodity market, there was a conflicting aspect between the return rate of spot and futures. Overall, however, its statistical significance was low. With respect to the volatility, we found that the natural gas market has little influence on the oil market unlike the predictive power of oil market on natural gas market. Concerning the return rate of the predictive power within homogeneous commodity market, we found that the return rate of spot has the predictive power on futures only in the European market. In addition, we identified that there is feedback between spot and futures in the all commodity markets regarding volatility. As a result of the spot price stabilizing effect analysis of futures price, futures volatility increased the spot volatility.

A Study on Syngas Co-Combustion Characteristics in a 0.7 MWth Water-Tube Boiler with Single Heavy Oil Burner (중유 싱글 버너 수관식 보일러에서의 합성가스 혼합연소 특성 연구)

  • Choi, Sin-Yeong;Yang, Dong-Jin;Bang, Byoung-Yeol;Yang, Won
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.452-459
    • /
    • 2010
  • This study is aimed to investigate changes of combustion characteristics and heat efficiency when syngas from gasification process using low-rank fuel such as waste and/or biomass is applied partially to an industrial boiler. An experimental study on syngas co-combustion was performed in a 0.7 MW (1 ton steam/hr) water tube boiler using heavy oil as a main fuel. Three kinds of syngas were used as an alternative fuel: mixture gas of pure carbon monoxide and hydrogen, syngas of low calorific value generated from an air-blown gasification process, and syngas of high calorific value produced from an oxygen-blown gasification process. Effects of co-combustion ratio (0~20%) for each syngas on flue gas composition were investigated through syngas injection through the nozzles installed in the side wall of the boiler and measuring $O_2$, $CO_2$, CO and NOx concentrations in the flue gas. When syngas co-combustion was applied, injected syngas was observed to be burned completely and NOx concentration was decreased because nitrogen-containing-heavy oil was partially replaced by the syngas. However, heat efficiency of the boiler was observed to be decreased due to inert compounds in the syngas and the more significant decrease was found when syngas of lower calorific value was used. However, the decrease of the efficiency was under 10% of the heat replacement by syngas.

An Experimental Study on Oil Separation Characteristics of $CO_2$/P AG Oil Mixture in an Oil Separator

  • Kang, Byung-Ha;Kim, Kyung-Jae;Lee, Sung-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.88-93
    • /
    • 2009
  • Lubricant oil is needed in air conditioning and refrigeration system because the compressor requires oil to prevent surface to surface contact between its moving parts, to remove heat, to provide sealing, to keep out contaminants, to prevent corrosion, and to dispose of debris created by wear. Thus, the oil separation in an oil separator is one of the most important characteristics for proper compressor operation. In this study, a gravity type of oil separator is used. Oil separation characteristics have been investigated for $CO_2$/PAG mixture in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$ at 50 bar and $70^{\circ}C$ to $90^{\circ}C$ at 80 bar. The results obtained indicate that the oil separation is increased with an increase in the oil concentration. It is also found that the oil separation in liquid state is increased with an increase in the mixture temperature while the oil separation in gas state is decreased.

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.