• Title/Summary/Keyword: Offset Mesh

Search Result 33, Processing Time 0.025 seconds

Automatic Generation of Hexahedral Meshes in Shell Structures (쉘 구조물에서 육면체 요소망의 자동 생성)

  • Lee B.C.;Chae S.W.;Kwon K.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • This paper describes hexahedral mesh generation for various shell structures, such as automobile bodies, plastic injection mold components and sheet metal parts by using chordal surfaces. After generaling one-layered tetrahedral mesh by an advancing front algorithm, the chordal surfaces are constructed by cutting of tetrahedral elements. Since the choral surfaces are composed of tri/quad elements with poor quality, they are transformed into quadrilateral elements with good quality. Hexahedral elements are then generated by offsetting these quadrilateral elements. The boundary nodes of hexahedral elements are generated on the outer surfaces of the original shell structures. Sample models including nonuniform thickness have been tested to validate the proposed algorithm.

Machining Tool Path Generation for Point Set

  • Park, Se-Youn;Shin, Ha-Yong
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • As the point sampling technology evolves rapidly, there has been increasing need in generating tool path from dense point set without creating intermediate models such as triangular meshes or surfaces. In this paper, we present a new tool path generation method from point set using Euclidean distance fields based on Algebraic Point Set Surfaces (APSS). Once an Euclidean distance field from the target shape is obtained, it is fairly easy to generate tool paths. In order to compute the distance from a point in the 3D space to the point set, we locally fit an algebraic sphere using moving least square method (MLS) for accurate and simple calculation. This process is repeated until it converges. The main advantages of our approach are : (1) tool paths are computed directly from point set without making triangular mesh or surfaces and their offsets, and (2) we do not have to worry about no local interference at concave region compared to the other methods using triangular mesh or surface model. Experimental results show that our approach can generate accurate enough tool paths from a point set in a robust manner and efficiently.

Practical Method for Generating Surface Mesh using Offset Table (기본 오프셋을 이용한 상선의 선체표면 격자계 생성방법)

  • Wo-Joan Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.61-69
    • /
    • 1999
  • To promote the usability of CFD techniques for the basic hull form design, a hull surface mesh generating program, based on given station offsets and centerline profile, is developed. The new method employs non-uniform parametric splines with predetermined waterline end-shapes of natural spline, normal spline, ellipse, parabola hyperbola, and their combinations. Generated hull surface meshes can be utilized for potential panel method immediately and can be also used as a boundary grid surface for 3-D field grid system. Mesh topology chosen to represent hull surface can be transformed into a rectangle, which he1ps the flow solvers to transform surface meshes for the nonlinear free surface condition or to define the turbulence quantities. To prove the applicability, a container ship with bow and stem bulb is chosen, and the procedures generating hull surface meshes are described.

  • PDF

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing (PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향)

  • Han, Hyun-Suk;Kwak, Sun-Woo;Kim, Bong-Min;Lee, Taik-Min;Kim, Sang-Ho;Kim, In-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.476-481
    • /
    • 2012
  • Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

A study on the Effects of Input Parameters on Springback Prediction Accuracy (스프링백 해석 정도 향상을 위한 입력조건에 관한 연구)

  • Han, Y.S.;Oh, S.W.;Choi, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.285-288
    • /
    • 2007
  • The use of commercial finite element analysis software to perform the entire process analysis and springback analysis has increased fast for last decade. Pamstamp2G is one of commercial software to be used widely in the world but it has still not been perfected in the springback prediction accuracy. We must select the combination of input parameters for the highest springback prediction accuracy in Pamstamp2G because springback prediction accuracy is sensitive to input parameters. Then we study the affect of input parameters to use member part for acquiring high springback prediction accuracy in Pamstamp2G. First, we choose important four parameters which are adaptive mesh level at drawing stage and cam flange stage, Gauss integration point number through the thickness and cam offset on basis of experiment. Second, we make a orthogonal array table L82[(7)] which is consist of 8 cases to be combined 4 input parameters, compare to tryout result and select main factors after analyzing affect factors of input parameters by Taguchi's method in 6 sigma. Third, we simulate after changing more detail the conditions of parameters to have big affect. At last, we find the best combination of input parameters for the highest springback prediction accuracy in Pamstamp2G. The results of the study provide the selection of input parameters to Pamstamp2G users who want to Increase the springback prediction accuracy.

  • PDF

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S.;Mukherjee, Somenath
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.

Wet Pressing Properties of OCC Stock depending on the Fines Contents (미세분 함량에 따른 골판지원지의 압착탈수 특성)

  • Jung, Woong-Ki;Sung, Yong Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.21-27
    • /
    • 2012
  • The effects of fines contents in OCC stock on the wet pressing process were evaluated in this study. The fines were collected from the beaten OCC stock by using 200 mesh. The dryness of handsheet samples after the couch and after the 1st wet press were greatly affected by the fine contents of the OCC stock. The higher contents of fines resulted in the lower value in dryness but the higher value of density followed by the higher strength properties. The addition of the retention aids and the drainage aids on the OCC stocks showed the wet pressing efficiency were greatly affected by the fine contents rather than the addition of polymer additives. The increase in the fine retention by the polymer additives offset the improvement in the wet pressing efficiency originated from the polymer additives.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE IMPLANT FRACTURES

  • Kim Yang-Soo;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.295-313
    • /
    • 2006
  • Statement of problem. Higher fracture rates were reported for Branemark implants placed in the maxilla and for 3.75 mm diameter implants installed in the posterior region. Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element analysis and to compare different diameter of fixtures according to the level of alveolar bone resorption. Material and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for the 3i implant systems. Models were processed by the software programs HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a regular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0 mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm in length each with a cementation type abutment and titanium alloy screw. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized as 650 N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600 N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the fixtures according to different alveola. bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss). Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView programs were used for post processing. Results. The results from our experiment are as follows: 1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal force. 2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-creasing of the implant diameter. 3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter implant was possible. 4. With increasing of bending stress by loading offset, fracture of the abutment screw was possible.