Browse > Article
http://dx.doi.org/10.12989/sem.2019.69.6.615

Function space formulation of the 3-noded distorted Timoshenko metric beam element  

Manju, S. (CSIR-National Aerospace Laboratories)
Mukherjee, Somenath (CSIR-Central Mechanical Engineering Research Institute)
Publication Information
Structural Engineering and Mechanics / v.69, no.6, 2019 , pp. 615-626 More about this Journal
Abstract
The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.
Keywords
metric element; function spaces; symmetric formulation; element distortion; best-fit paradigm; variational correctness; orthogonal projections;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Prathap, G., Manju, S. and Senthilkumar, V. (2007), "The unsymmetric finite element formulation and variational correctness", Struct. Eng. Mech., 26(1), 31-42.   DOI
2 Prathap, G. and Mukherjee, S. (2003), "The engineer grapples with theorem 1.1 and lemma 6.3 of strang and fix", Curr. Sci., 85(7), 989-994.
3 Prathap, G. and Naganarayana, B.P. (1992), "Field-consistency rules for a three-noded shear flexible beam element under nonuniform isoparametric mapping", Int. J. Numer. Meth. Eng., 33(3), 649-664.   DOI
4 Prathap, G., Senthilkumar, V. and Manju, S. (2006), "Mesh distortion immunity of finite elements and the best-fit paradigm", Sadhana, 31(5), 505-514.   DOI
5 Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8 node plane element immune to mesh distortion under a quadratic field", Int. J. Numer. Meth. Eng., 58(11), 1718-1748.
6 Rajendran, S. and Subramanian, S. (2004), "Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric and metric-parametric formulations", Struct. Eng. Mech., 17(6), 767-788.   DOI
7 Rajendran, S. (2010), "A technique to develop mesh-distortion immune finite elements", Comput. Meth. Appl. Mech. Eng., 199(17), 1044-1063.   DOI
8 Shang, Y., Cen, S., Li, C.F. and Fu, X.R. (2015), "Two generalized conforming quadrilateral Mindlin-Reissner plate elements based on the displacement function", Fin. Elem. Analy. Des., 99, 24-38.   DOI
9 Strang, G. and Fix, G.J. (1973), An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, New Jersey, U.S.A.
10 Simo, J. and Hughes, T.J.R. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53, 51-54.   DOI
11 Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haisler, W.E. (1977), "On isoparametric vs. linear strain triangular elements", Int. J. Numer. Meth. Eng., 11(6), 1041-1043.   DOI
12 Shang, Y. and Ouyan, W. (2017), "4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion", Int. J. Numer. Meth. Eng., Accepted.
13 Zienkiewicz, O.C. (1991), The Finite Element Method, McGraw-Hill, New York, U.S.A.
14 Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortions on the performance of isoparametric elements", Int. J. Numer. Meth. Eng., 36(20), 3553-3576.   DOI
15 Zhou, P.L., Cen, S., Huang, J.B., Li, C.F. and Zhang, Q. (2017), "An unsymmetric 8-node hexahedral element with high distortion tolerance", Int. J. Numer. Meth. Eng., 109(8), 1130-1158.   DOI
16 Norrie, D.H. and De Vries, G. (1978), An Introduction to Finite Element Analysis, Academic Press, New York, U.S.A.
17 Kumar, S. and Prathap, G. (2008), "Mesh distortion, Locking and the use of metric trial functions for the displacement type finite elements", Struct. Eng. Mech., 29(3), 289-300.   DOI
18 Backlund, J. (1978), "On isoparametric elements", Int. J. Numer. Meth. Eng., 12, 731-732.   DOI
19 Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, New Jersey, U.S.A.
20 Mukherjee, S. and Jafarali, P. (2010), "Prathap's best-fit paradigm and optimal strain recovery points in indeterminate tapered bar analysis using linear element", Int. J. Numer. Meth. Biomed. Eng., 26(10), 1246-1262.   DOI
21 Mukherjee, S. and Manju, S. (2011), "An improved parametric formulation for the variationally correct distortion immune three-noded bar element", Struct. Eng. Mech., 38(3), 1-21.   DOI
22 Mukherjee, S. and Prathap, G. (2001), "Analysis of shear locking in Timoshenko beam using the function space approach", Commun. Numer. Meth. Eng., 17(6), 385-393.   DOI
23 Mukherjee, S. and Prathap, G. (2002a), "Analysis of delayed convergence in the 3-noded Timoshenko beam using the function space approach", Sadhana, 27, 507-526.   DOI
24 Mukherjee, S. and Prathap, G. (2002b), Variational Correctness in Finite Element Solutions Through Reduced Integration, Bangalore, India.
25 Cen, S., Zhou, G.H. and Fu, X.R. (2012), "A shape-free 8-node plane element unsymmetric analytical trial function method", Int. J. Numer. Meth. Eng., 91(2), 158-185.   DOI
26 Cen, S., Zhou, M.J. and Fu, X.R. (2011a), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5), 517-528.   DOI
27 Cen, S., Fu, X.R. and Zhou, M.J. (2011b), "8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Meth. Appl. Mech. Eng., 200(29), 2321-2336.   DOI
28 Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: A simple hybrid-trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234.   DOI
29 Cen, S., Zhou, P.L., Li, C.F. and Wu, C.J. (2015), "An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal's theorem", Int. J. Numer. Meth. Eng., 103(7), 469-500.   DOI
30 Fu, X.R., Cen, S., Li, C.F. and Chen, X.M. (2010), "Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function", Eng. Comput., 27(4), 442-463.   DOI
31 Gifford, L.N. (1979), "More on distorted isoparametric elements", Int. J. Numer. Meth. Eng., 14(2), 290-291.   DOI
32 Prathap, G. (1993), The Finite Element Method in Structural Mechanics, Kluwer Academic Press, Dordrecht, the Netherlands.
33 Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, New Jersey, U.S.A.