• Title/Summary/Keyword: Ochrobactrum anthropi

Search Result 19, Processing Time 0.032 seconds

Characterization of a paraquat resistance of Ochrobactrum anthropi JW-2. (Ochrobactrum anthropi JW-2의 paraquat 내성에 관한 특성)

  • 원성혜;이병현;조진기
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The bacterial strain JW-2 which conferred resistance against paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) was isolated from soil. The strain was identified as an Ochrobactrum anthropi based on its morphological, physiological, biological and fatty acid composition, and was designated as Ochrobactrum anthropi JW-2. We compard paraquat resistance of O. anthropi JW-2 with Escherichia coli J105. In the presence of 100mM paraquat, E. coli JM105 was not grown whereas the growth rate of O. anthropi was about 70% of control. We compared the sensitivity of O. anthropi JW-2 and E. coli J105 to redox-cycling compounds such as paraquat, plumbagin or menadione, which are known to exacebate wuperoxide generation. O. anthropi JW-2 did not show cross-resistance to plumbagin or menadione. superoxide dismutase activity was increased in paraqunt-treated E. coli JM105 while it was not increased in O.anthropi JW-2. These results suggest that the mechanism of paraquat resistance in O.anthropi JW-2 is probably due to selectively decreased permeability toward paraquat by membrane protein.

  • PDF

Genome sequence of Ochrobactrum anthropi AM3 isolated from compost (퇴비에서 분리한 Ochrobactrum anthropi AM3의 유전체 염기서열)

  • Patil, Kishor Sureshbhai;Lee, Seung Je;Park, Soo-Je;Chae, Jong-Chan
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.503-504
    • /
    • 2016
  • Ochrobactrum anthropi AM3 was isolated for the ability to utilize lignin as a sole carbon and energy source from compost in South Korea. Here we report the 5.11 Mb draft genome of strain AM3 with a G+C content of 56.2%, which is helpful for understanding the genetic diversity among Ochrobactrum spp. and the mechanism of lignin degradation.

A Case of Ochrobactrum anthropi Infection after Using Medicinal Plants (약초 복용 후 Ochrobactrum anthropi에 감염 1예)

  • Cho, Seang-Sig;Cheun, Jai-Woo;Jeun, Chun-Bae;Park, Sang-Muk;Jang, Sook-Jin;Moon, Dae-Soo;Park, Young-Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.22-25
    • /
    • 2006
  • Ochrobactrum anthropi, previously known as Achromobacter species biotypes 1 and 2 (CDC groups Vd-1, Vd-2), belong to the groups of non-Enterobacteriaceae- nonfermentative Gram negative bacilli. Achromobacter is not presently a recognized genus. Achromobacter xylosoxidans has been transferred to genus Alcaligenes as A. xylosoxidans subsp. xylosoxidans, and "Achromobacter" sp. group Vd has been named Ochrobactrum anthropi. O. anthropi was isolated from a blood culture. Organisms were identified as O. anthropi by use of the biochemical test and the VITEK 2(bioMerieux, USA). The Organism was susceptible only to colistin, imipenem, meropenem, and tetracycline, but were resistant to amikacin, aztreonam, cefepime, ceftazidime, cefpirome, ciprofloxacin, gentamicin, isepamcin, netilmicin, pefloxacin, piperacillin, piperacillin/tazobactam, ticarcillin, ticarcillin/clavulanic acid, tobramycin, and trimethoprim/sulfamethoxazole. We report the clinical and microbiologic characteristics of O. anthropi infection in the patient. This is the first case of O. anthropi infection after using a plant as medicine at Chosun University Hospital.

  • PDF

Plant Growth Promotion Effect of Ochrobactrum anthropi A-1 isolated from Soil of Oyster Mushroom Farmhouse (느타리버섯 재배 토양으로부터 분리한 Ochrobactrum anthropi A-1의 식물생장촉진효과)

  • Lee, Chang-Jae;Lee, Heon-Hak;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.4
    • /
    • pp.275-281
    • /
    • 2015
  • An auxin-producing bacteria (A-1) was isolated from soils of Oyster mushroom farmhouse in Daejeon city, South Korea. The strain A-1 was classified as a novel strain of Ochrobactrum anthropi based on a chemotaxanomic and phylogenetic analyses. The isolate was confirmed to produce indole-3-acetic acid (IAA), one of auxin hormones, by TLC and HPLC analyses. The maximum concentration of IAA, $5.6mg\;L^{-1}$ was detected from the culture broth of O. anthropi A-1 incubated for 24 h at $35^{\circ}C$ in R2A broth containing 0.1% L-tryptophan. To investigate the growth-promoting effects to the crops, the culture broth of O. anthropi A-1 was inoculated to water cultures and seed pots of mung bean as well as lettuce. In consequence, the adventitious root induction and root growth of mung bean and lettuce were 2.7 and 1.4 times higher than those of the non-inoculated, respectively.

Effective Identification of Ochrobactrum anthropi Isolated from Clinical Specimens (임상검체에서 분리된 Ochrobactrum anthropi의 효과적인 동정)

  • Ko, Hyun-Mi;Jo, Jun-Hyeon;Baek, Hae-Gyeong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.221-228
    • /
    • 2020
  • Ochrobactrum anthropi is a non-fermentative oxidative gram-negative bacillus that produces oxidase. Distinguishing a mixed culture with non-fermenting bacteria having a similar appearance and oxidase-positive is difficult, and there is a limit to accurate identification with a biochemical identification system. This paper proposes that the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Platform (MALDI-TOF) method is useful for classifying bacteria that are difficult to identify using biochemical testing methods. As a result of analyzing five cases of O. anthropi examined using MicroScan, it took 6.5 days to the final report, which was 3.5 days more than the 3.0 days of E. coli. The pus sample in patient 5 was a mixed infection with Achromobacter xylosoxidans, and it took 11.3 days because of multiple subculture and retests. Four patients were over 60 years old with an underlying disease, and the possibility of opportunistic and nosocomial infections could not be excluded. Among them, samples collected after 92 days of hospitalization were resistant to imipenem and meropenem. Therefore, an examination using the MALDI-TOF method will be useful for the rapid and adequate treatment of patients with difficult identification, such as O. anthropi.

Permeabilization of Ochrobactrum anthropi SY509 Cells with Organic Solvents for Whole Cell Biocatalyst

  • Park, Kyung-Oh;Song, Seung-Hoon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.147-150
    • /
    • 2004
  • Permeabilization is known to overcome cell membrane barriers of whole cell biocatalysts. The use of organic solvents is advantageous in terms of cost, simplicity, and efficiency. In this study, Ochrobactrum anthropi SY509 was permeabilized with various organic solvents. Treatment with organic solvents resulted in lower permeability barriers due to falling out lipids of the cell membrane. Therefore, permeabilized cells showed higher enzyme activity with no cell viability. Among various organic solvents, 0.5% (v/v) chloroform was selected as the most efficient permeabilizing reagent. Changes in the cell membrane structure were observe d and the residual amounts of phospholipids of the cell membrane were measured to investigate the mechanism of the improved permeability.

Characterization of Membrane-bound Nitrate Reductase from Denitrifying Bacteria Ochrobactrum anthropi SY509

  • Kim Seung-Hwan;Song Seung-Hoon;Yoo Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • In this study, we have purified and characterized the membrane bound nitrate reductase obtained from the denitrifying bacteria, Ochrobactrum anthropi SY509, which was isolated from soil samples. O. anthropi SY509 can grow in minimal medium using nitrate as a nitrogen source. We achieved an overall purification rate of 15-fold from the protein extracted from the membrane fraction, with a recovery of approximately 12% of activity. The enzyme exhibited its highest level of activity at pH 5.5, and the activity was increased up to $70^{\circ}C$. Periplasmic and cytochromic proteins, including nitrite and nitrous oxide reductase, were excluded during centrifugation and were verified using enzyme essay. Reduced methyl viologen was determined to be the most efficient electron donor among a variety of anionic and cationic dyestuffs, which could be also used as an electron donor with dimethyl dithionite. The effects of purification and storage conditions on the stability of enzyme were also investigated. The activity of the membranebound nitrate reductase was stably maintained for over 2 weeks in solution. To maintain the stability of enzyme, the cell was disrupted using sonication at low temperatures, and enzyme was extracted by hot water without any surfactant. The purified enzyme was stored in solution with no salt to prevent any significant losses in activity levels.

Cloning and Characterization of the Paraquat Resistance-Related Genes from Ochrobactrum anthropi JW-2 (Ochrobactrum anthropi JW-2 유래의 Paraquat 내성유전자 PqrA의 주변 유전자군 분석)

  • Bae Eun-Kyung;Lee Hyo-Shin;Won Sung-Hye;Lee Byung-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • A 4,971 bp chromosomal DNA fragment containing the pqrA, paraquat resistance gene, was cloned from Ochrobactrum anthropi JW-2, and the complete nucleotide sequence was determined. Nucleotide and deduced amino acid sequences of the fragment revealed the presence of 4 complete ORFs (orf2, pqrA, orf3, orf4) and two incomplete ORFs(orf1, orf5). Orf1, pqrA, orf4 and orf5 exists at the direct strand but orf2 and orf3 exists at the reverse complementary strand. Orf1 which of incomplete sequences without start codon shares homology with ATP binding region of the response regulator receiver. Orf2 shares high homology with members of the tetR family of transcriptional repressor which have a helix-turn-helix (H-T-H) motif. Therefore, the orf2 is predicted as a transcriptional repressor of pqrA and is designated as pqrR2. Orf3 shares high homology with the members of the lysR family acting as a transcriptional activator which have both of a H-T-H motif at the N-terminal region and substrate binding domain at the C-terminal region. Therefore, the orf3 is predicted as a transcriptional activator of pqrA and is designated as pqrR1. Orf4 shows homology with the periplasmic substrate-binding protein of amino acid ABC transporter. Orf5 which of incomplete sequences without stop codon revealed the homology with the permeases protein of amino acid ABC transporter.

Soil Microorganism Degrading Polycaprolactone (Polycaprolactone을 분해하는 토양미생물)

  • Kim Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.400-404
    • /
    • 2004
  • Polycaprolactone (PCL), a synthetic aliphatic polyester, was buried in activated sludge soil for 66 days at $27^\circ{C}$ and $37^\circ{C}$. The morphology of the surface of PCL film degraded by soil microorganisms was observed. Soil microorganisms degrading PCL were isolated and identified. Soil fungi and soil bacteria utilizing PCL as carbon or energy source were identified as Paecilomyces fumosoroseus KH27, Penicillium digitatum KH28, Fusarium solani KH29, Aspergillus sp. KH30 and Ochrobactrum anthropi KH31, respectively. Biodegradation test of PCL by the isolated strains showed that, P. digitatum KH28 exhibited the most PCL degrading activity at $27^\circ{C}$. However, at $37^\circ{C}$ O. anthropi KH31 showed higher degrading activity than the other soil microorganisms tested.

Effect of Oxidation-Reduction Potential on Denitrification by Ochrobactrum anthropi SY509

  • Song, Seung-Hoon;Yeom, Sung-Ho;Choi, Suk-Soon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.473-476
    • /
    • 2003
  • The effect of oxidation-reduction potential (ORP) level on the denitrification by Ochrobactrum anthropi SY509 was investigated under nongrowing condition. The maximum ORP level of nitrate-containing buffer solution was -70∼-80 mV, under which the denitrification took place. By decreasing the initial ORP level, denitrifying enzyme activity was greatly enhanced, which led to higher denitrification efficiency.