Soil Microorganism Degrading Polycaprolactone

Polycaprolactone을 분해하는 토양미생물

  • 김말남 (상명대학교 자연과학부)
  • Published : 2004.09.01

Abstract

Polycaprolactone (PCL), a synthetic aliphatic polyester, was buried in activated sludge soil for 66 days at $27^\circ{C}$ and $37^\circ{C}$. The morphology of the surface of PCL film degraded by soil microorganisms was observed. Soil microorganisms degrading PCL were isolated and identified. Soil fungi and soil bacteria utilizing PCL as carbon or energy source were identified as Paecilomyces fumosoroseus KH27, Penicillium digitatum KH28, Fusarium solani KH29, Aspergillus sp. KH30 and Ochrobactrum anthropi KH31, respectively. Biodegradation test of PCL by the isolated strains showed that, P. digitatum KH28 exhibited the most PCL degrading activity at $27^\circ{C}$. However, at $37^\circ{C}$ O. anthropi KH31 showed higher degrading activity than the other soil microorganisms tested.

유기합성적으로 제조된 지방족 폴리에스테르의 일종인 polycaprolactone (PCL)을 $27^\circ{C}$$37^\circ{C}$로 온도를 달리한 활성오니토양에 66일간 매립하여 토양미생물에 의해 분해된 PCL 필름의 표면변화를 관찰하고, PCL을 분해하는 토양진균과 토양세균을 분리, 동정하였다. PCL을 탄소원과 에너지원으로 이용하는 토양진균으로는 Paecilomyces fumosoroseus KH27, Penicillium digitatum KH28, Fusarium solani KH29와 Aspergillus sp. KH30, 토양세균으로는 Ochrobactrum anthropi KH3l이 분리되었다. $27^\circ{C}$에서는 P. digitatum KH28이 가장 높은 PCL 분해능(46%)을 보였고, $37^\circ{C}$에서는 O. anthropi KH31의 분해능(52%)이 가장 우수하였다.

Keywords

References

  1. Benedict CV, JA Cameron and SJ Juang. 1983. Polyca-prolactone degradation by mixed and pure cultures of bacteria and a yeast. J. Appl. Poly. Sci. 28:335-342 https://doi.org/10.1002/app.1983.070280129
  2. Booth C. 1971. The Genus Fusarium. Commonwealth Mycological Institute. Kew Survey. England
  3. Domsch KH, W Gams and TH Anderson. 1980. Compen-dium of soil fungi. Vol. 1-2. Academic Press, London
  4. Gams W, HA Van der Aa, Van der HJ Plaasts-Niterink, RA Samson and JA Stalpers. 1987. Cetraalbureau voor Schimmelcultures. CBS course Mycol. pp.16-18
  5. Holt JG 1993. Bergey's manual of determinative bacter-iology. 9th. Wilhams & Wilkins. Baltimore
  6. Kavelman R and B Kendrick. 1978. Degradation of a plastic-poly epsilon-caprolactone-by hyphomycetes. Mycologia 70:87-103 https://doi.org/10.2307/3758690
  7. Kim MN and EJ Kang. 1995. Biodegradation of Po1y(3 hydroxybutyrate) by PeniciUium pinophitum. Kor. J Mycol. 23:354-358
  8. Mochizuki M, M Hirano, Y Kanmuri, K Kudo and Y Tokiwa. 1995. Hydrolysis of polycaprolactone fibers by lipase: EfFects ofdraw ratio on enzymatic degradation. J. Appl. Poly. Sci. 55:289-296 https://doi.org/10.1002/app.1995.070550212
  9. Murphy CA, JA Cameron, SJ Huang and RT Vinopal. 1996. Fusarium polycaprolactone depolymerase is cutinase. Appl. Envion. Microbiol. 62:456-460
  10. Nishida H and Y Tokiwa. 1995. Confirmation of coloniza-tion of degrading bacterium strain SC-17 on poly (3hydroxybutyrate) cast film. J. Environ. Polym. Degrad. 3:187-197 https://doi.org/10.1007/BF02068673
  11. Oda Y. H Asari. T Urakami and K Tonomura. 1995. Micro-bial degradation ofpo1y(3-hydroxybutyrate) and poly-caprolactone by filamentous fungi. J. Ferment. Bioeng. 80:265-269 https://doi.org/10.1016/0922-338X(95)90827-M
  12. Oda Y, N Oida, T Urakami and K Tonomura. 1997. Poly-caprolactone depolymerase produced by the bacterium AtcaIigenes faecaIis. FEMS Microbiol. Lett. 152:339-343 https://doi.org/10.1111/j.1574-6968.1997.tb10449.x
  13. Pitt JI. 1991. A laboratory guide to common Penicittium species. Common Scientific and Industrial Research Organization Division of Food Research
  14. Raghavan D. 1995. Characterization of biodegradable plastics. Polym. Technol. Eng. 34:41-63 https://doi.org/10.1080/03602559508017212
  15. Tokiwa Y, T Ando and T Suzuki. 1976. Degradation of pol-ycaprolactone by a fungus. J. Ferment. Technol. 54: 603-608