• Title/Summary/Keyword: Ocean wind turbine

Search Result 204, Processing Time 0.027 seconds

Study of Dynamic Characteristics of 2.5-MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 동특성 연구)

  • Kimg, Jung-Su;Park, No-Gill;Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.314-323
    • /
    • 2014
  • In this study, a gearbox and blade were modeled in the MASTA program, and the housing and carrier components were modeled using a finite element method. Using substructure synthesis, all the components were combined and used to establish a vibration model of a 2.5-MW wind turbine gearbox. In addition, the safety displacement factor was evaluated using an AGMA data sheet about bearing's outer race for the input shaft and output shaft. As a result, the bearing's outer race for the input shaft, and the radial and axial responses were satisfied by the $1^{st}$ and $2^{nd}$ planetary gears and the $3^{nd}$ helical gear transmission error(TE), respectively. However, the output shaft support bearing's outer race responses were not satisfied with the radial response by the $2^{nd}$ TE and axial response by the $3^{rd}$ TE. To reduce the vibration, tooth modification was needed. After profile tooth modification, at the outer race of the output shaft support bearing, the radial response was reduced by approximately $20{\mu}m$, and the axial response was reduced by approximately $6{\mu}m$.

Economic Feasibility of Bucket Foundation for Offshore Wind Farm (해상풍력발전 버켓기초공법의 경제성 평가)

  • Oh, Myoung-Hak;Kwon, O-Soon;Kim, Keun-Soo;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1908-1914
    • /
    • 2012
  • As the turbine capacity and the water depth of wind farms are increasing, the construction cost of substructures and foundations for offshore wind turbines is expected to increase. Since the installation of suction bucket foundation is achieved by both self-weight and applied suction, the construction generally does not require heavy equipment for penetration. This study provides an economic analysis on the tripod which have the bucket foundations and compares that the jacket foundation at 50m water depth on sand layer or soft layer. As the strength of the soil and the number of the foundation is increasing, the construction cost of the tripod with the bucket foundations is more economically feasible than the jacket foundation.

Optimal Layout Design of Offshore Wind Turbines by Response Surface Analysis (반응표면분석법에 의한 해상풍력터빈 최적배치 설계)

  • Kim, Ji-Young;Kim, Kyoung-Yul;Lee, Jun-Shin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • An optimal layout condition of the offshore wind turbines is studied by using the response surface analysis which is a kind of the design of experiments. Based on the assumption that total 36 turbines would be installed in the offshore wind farm, the number and distance of the rows and columns are used as the design variables and the efficiency decrease of power generation due to the wake decay by the interactions of turbines and the installation cost of the internal electric grid are considered as the objective functions of the response surface analysis for the layout design of turbines. Useful design information can be derived by analyzing the relationship between the design variables and target functions. It is found that the row number and the distance between rows should be minimized, and the optimal distance between columns should be estimated and adopted to the layout design within the specified design range in order to ensure the economics for the offshore wind farm.

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

A Study on Ship Safety Distance Between AIS Based Ships Route and Offshore Wind Farm (AIS 기반 선박통항로 및 해상풍력단지간 선박안전이격거리 도출)

  • Son, Woo-Ju;Lee, Bo-Kyung;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.79-81
    • /
    • 2019
  • 국내 해상풍력발전단지와 선박간의 이격거리에 대한 명확한 규정 및 법령이 없는 시점에서 이 연구는 국내 해상풍력발전단지의 안전거리를 국내 및 해외의 관련 규정 및 문헌을 검토사항을 바탕으로 부산 청사포 해역 인근의 선박 통항량을 AIS Data 기반 분석하여 해상풍력발전단지 시설물(Wind Turbine)의 안전을 확보하기 위한 방안을 검토하였다.

  • PDF

Comparison of LCOE of the Southwest Offshore Wind Farm According to Types and Construction Methods of Supporting Structures (해상풍력 지지구조물 형식 및 시공 방법에 따른 서남해 해상풍력실증단지의 균등화발전비용 비교)

  • SeoHo Yoon;Sun Bin Kim;Gil Lim Yoon;Jin-Hak Yi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • In order to understand the economic feasibility of an offshore wind farm, this paper analyzed the differences in LCOE (levelized cost of energy) according to the support type and construction method of the substructure in terms of LCOE and sensitivity analysis was conducted according to the main components of LCOE. As for the site to be studied, the Southwest Offshore Wind Farm was selected, and the capital expenditures were calculated according to the size of the offshore wind farm and the installation unit. As a result of the sensitivity analysis, major components showed high sensitivity to availability, turbine related cost, weighted average cost of capital and balance of system related cost. Moreover, the post-piling jacket method, which was representatively applied to the substructure of the offshore wind farm in Korea, was selected as a basic plan to calculate the capital expenditures, and then the capital expenditures of the pre-piling jacket method and the tripod method were calculated and compared. As a result of analyzing the LCOE, it was confirmed that the pre-piling jacket method of the supporting structure lowers the LCOE and improves economic feasibility as the installation number of turbines increases.

Parametric Study on Scouring around Suction Bucket Foundation (파라미터 변화에 따른 석션버켓기초에 발생하는 세굴현상에 대한 수치해석 연구)

  • Park, Sunho;Song, Seongjin;Wang, Haiqing;Joung, Taehwan;Shin, Yunsup
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2017
  • In the case of fixed offshore wind turbines, scouring phenomena have been reported around sub-structures as a result of currents, which seriously damage the structural stability. A parametric study of the various sub-structures of a fixed offshore wind turbine was performed to investigate their effects on the scouring phenomena. For a suction bucket foundation and monopile, the effects of the stick-up heights and water depth were studied, respectively. The open source libraries, called OpenFOAM, were used to simulate a violent flow around a foundation. The numerical methods were selected based on a two-dimensional analysis of a suction bucket. Based on the results for various stick-up heights, a larger scouring region was observed with an increase in the stick-up height because of the down-wash flow around a foundation. Based on the results for various monopile water depths, the water depth had an insignificant effect on the scouring.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

On the fatigue behavior of support structures for offshore wind turbines

  • Alati, N.;Nava, V.;Failla, G.;Arena, F.;Santini, A.
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.117-134
    • /
    • 2014
  • It is believed that offshore wind farms may satisfy an increasing portion of the energy demand in the next years. This paper presents a comparative study of the fatigue performances of tripod and jacket steel support structures for offshore wind turbines in waters of intermediate depth (20-50 m). A reference site at a water depth of 45 m in the North Atlantic Ocean is considered. The tripod and jacket support structures are conceived according to typical current design. The fatigue behavior is assessed in the time domain under combined stochastic wind and wave loading and the results are compared in terms of a lifetime damage equivalent load.

Design and analysis of offshore wind structure

  • Young-Suk You;Min-Young Sun;Young-Ho Lee
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.191-217
    • /
    • 2023
  • The objective of this study was to evaluate the foundation structure of a 3.6-MW wind turbine generator (WTG) installed offshore in Western Korea. The ultimate limit state (ULS) and fatigue limit state (FLS) of the multi-pile steel foundation (MSF) installed at the Saemangeum offshore wind farm were structurally investigated using the finite element (FE) software, ANSYS Workbench 19.0. According to the ULS analysis, no plastic deformation was found in any of the components constituting the substructure. At the same time, the maximal stress value reached the calculation limit of 335 MPa. According to the FLS results, the stress concentration factor (SCF) ranged from 1.00 to 1.88 in all components. The results of this study can be applied to determine the optimal design for MSFs.