DOI QR코드

DOI QR Code

해상풍력 지지구조물 형식 및 시공 방법에 따른 서남해 해상풍력실증단지의 균등화발전비용 비교

Comparison of LCOE of the Southwest Offshore Wind Farm According to Types and Construction Methods of Supporting Structures

  • 윤서호 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과, 한국해양과학기술원 해양공간개발.에너지연구부) ;
  • 김선빈 (한국해양과학기술원 해양공간개발.에너지연구부) ;
  • 윤길림 (한국해양과학기술원 해양공간개발.에너지연구부) ;
  • 이진학 (한국해양과학기술원 해양공간개발.에너지연구부, 한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)
  • SeoHo Yoon (Dept. of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University, Ocean Space Development & Energy Research Department, KoreaInstitute of Ocean Science & Technology) ;
  • Sun Bin Kim (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science & Technology) ;
  • Gil Lim Yoon (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science & Technology) ;
  • Jin-Hak Yi (Ocean Space Development & Energy Research Department, Korea Institute of Ocean Science & Technology, Dept. of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime & Ocean University)
  • 투고 : 2023.05.31
  • 심사 : 2023.06.27
  • 발행 : 2023.06.30

초록

본 논문에서는 해상풍력발전단지의 경제성을 파악하고자 발전단가 측면에서 해상풍력 지지구조물 형식 및 시공 방법에 따른 균등화발전비용(levelized cost of energy, LCOE)의 차이를 분석하고 LCOE의 주요 구성 요소에 따른 민감도 분석을 실시하였다. 연구대상 현장으로 국내 서남해 해상풍력실증단지를 선정하였으며, 설치 기수에 따른 공사비를 분석하였다. LCOE 민감도 분석 결과 설비이용률, 터빈 관련 비용, 가중평균자본비용 그리고 BOS(balance of system) 관련 비용의 순서로 LCOE에 대한 민감도가 높은 것으로 나타났다. 아울러 국내 해상풍력 지지구조물로 주로 적용되었던 포스트파일링(post-piling) 재킷 공법을 기본안으로 선정하여 공사비를 산출한 후, 시공 방법을 프리파일링(pre-piling)으로 변경한 재킷 공법과 트라이포드(tripod) 공법의 초기투자비용을 비교하였다. 그에 따른 LCOE를 분석한 결과, 프리파일링 재킷 공법의 경우 고가의 템플릿이 필요하지만, 강재 소모량이 적고, 설치규모가 대형화할수록 시공 기간이 단축되어 전체 공사비 및 LCOE가 낮아지며 경제성이 향상되는 것을 확인하였다.

In order to understand the economic feasibility of an offshore wind farm, this paper analyzed the differences in LCOE (levelized cost of energy) according to the support type and construction method of the substructure in terms of LCOE and sensitivity analysis was conducted according to the main components of LCOE. As for the site to be studied, the Southwest Offshore Wind Farm was selected, and the capital expenditures were calculated according to the size of the offshore wind farm and the installation unit. As a result of the sensitivity analysis, major components showed high sensitivity to availability, turbine related cost, weighted average cost of capital and balance of system related cost. Moreover, the post-piling jacket method, which was representatively applied to the substructure of the offshore wind farm in Korea, was selected as a basic plan to calculate the capital expenditures, and then the capital expenditures of the pre-piling jacket method and the tripod method were calculated and compared. As a result of analyzing the LCOE, it was confirmed that the pre-piling jacket method of the supporting structure lowers the LCOE and improves economic feasibility as the installation number of turbines increases.

키워드

과제정보

본 연구는 2023년 한국해양과학기술원 기본사업(과제명: 해양에너지 및 항만·해양구조물 고도화 기술 개발, 과제번호: PEA0131)의 지원으로 수행되었습니다.

참고문헌

  1. Baert, B. (2014). Analysis of the installation of a series of piles for offshore wind turbine foundations. Master thesis, University of Rostock.
  2. Bosch, J., Staffell, I. and Hawkes, A.D. (2019). Global levelised cost of electricity from offshore wind. Energy, 189, 116357.
  3. Choi, H.S., Ha, S.Y., Lee, D.H., Choi, B.R. and Zi, G.S. (2019). Integrated installation of jacket substructures to improve economic efficiency for offshore wind power. Korean Society of Civil Engineers, 1075-1076 (in Korean).
  4. Department for Business, Energy and Industrial Strategy (BEIS) (2019). Energy innovation needs assessment, sub-theme report: tidal stream.
  5. Global Wind Energy Council (GWEC) (2022). GWEC Global Wind Report 2022. Global wind energy council: Bonn, Germany.
  6. International Renewable Energy Agency (IRENA) (2021). Renewable power generation costs in 2020. Abu Dhabi.
  7. Kausche, M., Adam, F., Dahlhaus, F., and Grossmann, J. (2018). Floating offshore wind-Economic and ecological challenges of a TLP solution. Renewable Energy, 126, 270-280. https://doi.org/10.1016/j.renene.2018.03.058
  8. Korea Agency for Technology and Standards (KATS) (2013). KS C IEC 61400-3. Wind turbines-Part 3: Design requirements for offshore wind turbines (in Korean).
  9. Korea Energy Agency (KEA) (2019). New & Renewable Energy White Paper (in Korean).
  10. Korea Energy Economics Institute (KEEI) (2020). Study on the estimated levelized cost of energy (LCOE) for offshore wind power generation with newly designed support structures (in Korean).
  11. Korea Institute of Ocean Science and Technology (KIOST) (2019). Estimation of construction cost of support structures in offshore wind farm (in Korean).
  12. Korea Institute of S&T Evaluation and Planning (KISTEP) (2022). Offshore wind power generation (in Korean).
  13. Mathew, M.S., Kandukuri, S.T. and Omlin, C.W. (2022). Estimation of Wind Turbine Performance Degradation with Deep Neural Networks. In PHM Society European Conference, 7(1), 351-359.
  14. May, A., McMillan, D. and Thons, S. (2015). Economic analysis of condition monitoring systems for offshore wind turbine sub-systems. IET Renewable Power Generation, 9(8), 900-907. https://doi.org/10.1049/iet-rpg.2015.0019
  15. Ministry of Trade, Industry and Energy (MOTIE) (2020). A plan for offshore wind power generation that involves collaboration with local residents and promotes coexistence with the fishing industry (in Korean).
  16. Moon, W.S., Shin, J.W. and Yoon, K.H. (2021). Economic evaluation of large-scale offshore wind farm considering wind speed and wind turbine capacity. The transactions of The Korean Institute of Electrical Engineers (The Korean Institute of Electrical Engineers),70(7), 953-960 (in Korean). https://doi.org/10.5370/KIEE.2021.70.7.953
  17. National Renewable Energy Laboratory (NREL) (2016). Cost of wind energy review, USA.
  18. Oh, J.B. (2017). Suggestions for Korea offshore wind development plan. Journal of Wind Energy, 8(1), 5-15 (in Korean). https://doi.org/10.33519/KWEA.2017.8.1.001
  19. Park, J.H. and Kim, B.S. (2019). An analysis of South Korea's energy transition policy with regards to offshore wind power development. Renewable and Sustainable Energy Reviews, 109, 71-84 (in Korean). https://doi.org/10.1016/j.rser.2019.04.031
  20. Seo, J.S., Maeng, J.H., Lim, E.P., Jin, S.J., Kim, H.M. and Kim, T.Y. (2019). Marine environmental characteristics around the test phase of offshore wind farm in the Southwestern Coast of Yellow Sea. Journal of Environmental Impact Assessment, 28(5), 457-470 (in Korean). https://doi.org/10.14249/EIA.2019.28.5.457
  21. Simpson, J.G., Hanrahan, G., Loth, E., Koenig, G.M. and Sadoway, D.R. (2021). Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis. Renewable and Sustainable Energy Reviews, 149, 111387.
  22. Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E., Lantz, E. and Gilman, P. (2021). Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nature Energy, 6(5), 555-565. https://doi.org/10.1038/s41560-021-00810-z
  23. Youn, H.J., Jang, I.S., Oh, M.H., Kwon, O. and Jung, S.J. (2010). Trend in suction bucket foundation for offshore wind turbine. In proceedings of the Korean geotechical society conference, Korean Geotechnical Society, 494-503 (in Korean).