• Title/Summary/Keyword: Ocean bottom

Search Result 1,219, Processing Time 0.026 seconds

A Study on the behavior of bottom water in water area by using modified POM (개량형 POM을 이용한 수역에서의 저층수의 거동에 관한 연구)

  • Yoon Jong-Sung;Lee Dong-Ken;Kim In-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.198-210
    • /
    • 2006
  • POM(Princeton Ocean Model) was utilized in this study because it took ${\sigma}-coordinate$ system which could predict the behavior of bottom water. The model has been increasingly applied to costal area although it was initially developed as the ocean flow model. The original POM did not correct computational errors in transformation of ${\sigma}-coordinate$ system. The trying to reduce conversional errors might improve accuracy of flow velocity in vicinities of bottom layer. Therefore, in this study it was proposed to modify the original POM by using error correction method suggested by $Sl{\Phi}rdal$(1997). The modified POM was applied to Young-rang Lake, one of the typical brackish lakes in Korea. It was found that the behavior of bottom water could be well predicted. Thus, it seems that the modified POM can be used as a useful tool to clarify the mechanism of formation and behavior of bottom water including oxygen-deficient water mass.

A Note on the Modified Mild-Slope Equation (修正 緩傾斜方程式에 대한 小考)

  • Kyung Doug Suh;Woo Sun Park;Chang Hoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.55-63
    • /
    • 1998
  • Recently the modified mild-slope equation has been developed by several researchers using different approaches, which, compared to the Berkhoff's mild-slope equation, includes additional terms proportional to the square of bottom slope and to the bottom curvature. By examining this equation, it is shown that both terms are equally important in intermediate-depth water, but in shallow water the influence of the bottom curvature term diminishes while that of the bottom slope square term remains significant. In order to examine the importance of these terms in more detail, the modified mild-slope equation and the Berkhoff's mild-slope equation are tested for the problems of wave reflection from a plane slope, a non-plane slope, and periodic ripples. It is shown that, when only the bottom slope is concerned, the mild-slope equation can give accurate results up to a slope of 1 in 1 rather than 1 in 3, which, until now, has been known as the limiting bottom slope for its proper application. It is also shown that the bottom curvature term plays an important role in modeling wave propagation over a bottom topography with relatively mild variation, but, where the bottom slope is not small, the bottom slope square term should also be included for more accurate results.

  • PDF

The Impact of Southern Ocean Thermohaline Circulation on the Antarctic Circumpolar Current Transport

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.291-299
    • /
    • 2006
  • The observed ocean barotropic circulation is not completely explained by the classical wind-driven circulation theory. Although it is believed that the thermohaline forcing plays a role in the ocean barotropic circulation to some degree, how much the thermohaline forcing contributes to the barotropic circulation is not well known. The role of thermohaline circulation driven by changes in temperature and salinity in the Southern Ocean (SO) water masses on the Antarctic Circumpolar Current (ACC) transport is investigated using a coupled ocean - atmosphere - sea ice - land surface climate system model in a Last Glacial Maximum (LGM) context. Withthe implementation of glacial boundary conditions in a coupled model, a substantial increase in the ACC transport by about 75% in 80 years of integration and 25% in the near LGM equilibrium is obtained despite of the decreases in the magnitude of wind stresses over the SO by 33% in the transient time and 20% in the near-equilibrium. This result suggests that the increase in the barotropic ACC transport is due to factors other than the wind forcing. The change in ocean thermohaline circulation in the SO seems to play a significant role in enhancing the ACC transport in association with the change in the bottom pressure torque.

  • PDF

A Numerical Modeling Study on the Seasonal Variability in the Gulf of Alaska (알라스카 만의 계절변화에 대한 수치모형 실험)

  • Bang, In-Kweon;Zygmunt Kowlik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.309-325
    • /
    • 1994
  • Ocean circulation in the Gulf of Alaska is remarkably constant throughout the year despite of being forced by one of the largest seasonal wind stresses in the world. To explain the small seasonal changes in the transport of Alaska Stream. a set of numerical models is employed. First a diagnostic approach is applied to reproduce circulation from the observed density structure. The results reveals the very small seasonal changes in the Alaska Stream transport. Next a series of the prognostic models is used: a barotropic model. a flat bottom baroclinic model, and baroclinic model with topography. These models reveal the influence of topography and baroclinicity on the ocean's response to the seasonal wind forcing. The intercomparisons of the various model results suggest that the seasonal response of the baroclinic ocean is primary barotropic and the resultant barotropic circulation is weakened by the scattering effect of the bottom topography.

  • PDF

Shear Properties of Bottom Ash-Crumb Rubber Mixture Reinforced with Waste Fishing Net Using Triaxial Test (삼축압축시험에 의한 폐어망 보강 저회-폐타이어 혼합토의 전단특성)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.81-91
    • /
    • 2013
  • This paper investigates the shear properties of bottom ash-crumb rubber mixture reinforced with waste fishing net. Mixtures used in this experiment were prepared at 2 different percentages of crumb rubber (2 mm~10 mm) content (i.e., 0%, 50% by weight of the dry bottom ash). In this study several series of triaxial tests were carried out on the six different specimens : unreinforced bottom ash, reinforced bottom ash with 1 or 2 layers, unreinforced mixture, reinforced mixture with 1 or 2 layers. The experimental results indicated that the shear properties of bottom ash-crumb rubber mixture were strongly influenced by reinforcing layer of waste fishing net and crumb rubber addition. It is shown that the internal friction angle of bottom ash-crumb rubber mixture decrease with addition of crumb rubber due to the compression properties of crumb rubber. However, the internal friction angle of the mixture increased with an increase in reinforcing layer due to interlocking effect and friction between mixture and waste fishing net.

Fundamental Study on the Migrating Course of Fish Around the Set Net - The Bottom Contour Contour and the Tidal Current around Set Net - (정치망어장의 어도형성에 관한 기초연구 ( 2 ) - 해저지형의 해수유동-)

  • Lee, Ju-Hui;Yeom, Mal-Gu;Park, Byeong-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 1988
  • The observation of the tidal current and the bottom contour around the set net fishing ground were carried out at four different regions of the southern part of Korea in order to obtain the basic information on the migrating course of fishes. The bottom contour was surveyed with portable echo sounder, and the tidal current was observed by two different methods at the same time. One was 25 hour observation at the fixed position with self-recording current meter (Inter Ocean Model 135 type) and the other was the drift observation of radar reflectors. Most of the set nets have been set near bottom valleys. It was regarded that the fish school became to dense easily near the valley according to the combined effect of the tidal current and the bottom contour.

  • PDF