• Title/Summary/Keyword: Ocean and Meteorological Satellite(COMS)

Search Result 212, Processing Time 0.039 seconds

Combined Gain Analysis of L-band Transmit Antenna in COMS (COMS L-대역 송신 안테나 합성 이득 해석)

  • Kim, Joong-Pyo;Yang, Koon-Ho;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • The COMS (Communication Ocean Meteorological Satellite) is a hybrid geostationary satellite including communication, ocean, and meteorological payloads. The COMS includes the MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station, and relaying the meteorological data processed on the ground to the end-user stations. Here, for the L-band transmit antenna transmitting SD (Sensor Data) signal and the processed signal, from the system point of view, it is required to estimate the combined antenna gain when the L-band transmit is placed with MI and GOCI payloads on the earth panel of COMS. First of all, the L-band transmit horn is designed and analyzed for the requirements given, and then after placing it on the earth panel, the combined gain analysis is performed using three different analysis methods. It's shown that the obtained gain patterns are very similar among three different analysis methods. Finally the antenna gain degradation of less than 0.5 dB is estimated.

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

DETERMINATION OF USER DISTRIBUTION IMAGE SIZE AND POSITION OF EACH OBSERVATION AREA OF METEOROLOGICAL IMAGER IN COMS (COMS 기상탑재체의 관측영역별 사용자 배포 영상의 크기 및 위치결정)

  • Seo, Jeong-Soo;Seo, Seok-Bae;Kim, Eun-Kyou
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.415-424
    • /
    • 2006
  • In this paper, requirements of Meteorological Administration about Meteorological Image. (MI) of Communications, Ocean and Meteorological Satellite (COMS) is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV) stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

  • Lee, Soo-Jeon;Jung, Won-Chan;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.26-31
    • /
    • 2008
  • As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent GOCI's image quality degradation will be presented.

  • PDF

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

A Preliminary Performance Analysis of the Meteorological and Ocean Data Communication Subsystem in COMS (통신해양기상위성 기상해양데이터통신계의 예비 성능 해석)

  • Kim, Jung-Pyo;Yang, Gun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 2006
  • The COMS (Communication, Ocean, and Meteorological Satellite) performing meteorological and ocean monitoring and providing communication service with meteorological, ocean and Ka-band payload in the geostationary orbit includes MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station and relaying the meteorological data processed on the ground to the end-user stations. MODCS comprises of two channels: SD channel which formats the raw data according to CCSDS recommendation, amplifies and transmits its signal to the ground station; MPDR channel which relays to the end-user stations the ground-processed meteorological data in the data format of LRIT/HRIT recommended by CGMS. This paper constructs the architecture of MODCS for transmitting and relating the observed data, and investigates that the key performance parameters have the required margin through the preliminary performance analyses.

  • PDF

Characteristics of COMS MI Radiometric Calibration

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.71-74
    • /
    • 2006
  • Communication Ocean Meteorological Satellite (COMS) is planned to be launched onto Geostationary Earth Orbit in 2008. The meteorological imager (MI) is one of COMS payloads and has 5 spectral channels to monitor meteorological phenomenon around the Korean peninsular intensively and of Asian-side full Earth disk periodically. The MI has on-board radiometric calibration capabilities called 'blackbody calibration' for infrared channels and 'space look' for infrared/visible channels, and radiometric response stability monitoring device called 'albedo monitor' for visible channel. Additionally the MI has on-board function called 'electrical calibration' for the check of imaging path electronics of both infrared and visible channels. The characterization of MI performance is performed to provide the pre-launch radiometric calibration data which will be used for in-orbit radiometric calibration with the on-board calibration outputs. The radiometric calibration of the COMS MI is introduced in the view point of instrument side in terms of in-orbit calibration devices and capabilities as well as the pre-launch calibration activities and expected outputs.

  • PDF

A Design of Image Preprocessing Subsystem for COMS (통신해양기상위성 영상 데이터 전처리 시스템 설계)

  • Seo Seok-Bae;Koo In-Hoi;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.390-393
    • /
    • 2006
  • 본 논문에서는 현재 개발 중인 통신해양기상위성(COMS : Communication, Ocean and Meteorological Satellite)의 데이터를 처리하는 영상 데이터 전처리 시스템 (IMPS, IMage Preprocessing Subsystem)의 설계 과정과 예비설계 결과를 설명한다.

  • PDF

A STUDY ON THE EAST/WEST STATION KEEPING PLANNING CONSIDERING WHEEL OFF-LOADING

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.263-266
    • /
    • 2006
  • Now, on the developing COMS(Communication, Ocean and Meteorological Satellite) has solar panel on the South panel only. Therefore, the wheel off-loading has to be performed periodically to reduce a induced momentum energy by a asymmetric solar panel. One of two East/West station keeping maneuver to correct simultaneously longitude and eccentricity, orbit corrections may be performed during one of the two wheel off-loading manoeuvres per day to get enough observation time for meteorological and ocean sensor. In this paper, we applied a linearized orbit maneuver equation to acquire maneuver time and delta-V. Nonlinear simulation for the station keeping is performed and compared with general station keeping strategy for fuel reduction.

  • PDF

An Estimation of the Composite Sea Surface Temperature using COMS and Polar Orbit Satellites Data in Northwest Pacific Ocean (천리안 위성과 극궤도 위성 자료를 이용한 북서태평양 해역의 합성 해수면온도 산출)

  • Kim, Tae-Myung;Chung, Sung-Rae;Chung, Chu-Yong;Baek, Seonkyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.275-285
    • /
    • 2017
  • National Meteorological Satellite Center(NMSC) has produced Sea Surface Temperature (SST) using Communication, Ocean, and Meteorological Satellite(COMS) data since April 2011. In this study, we have developed a new regional COMS SST algorithm optimized within the North-West Pacific Ocean area based on the Multi-Channel SST(MCSST) method and made a composite SST using polar orbit satellites as well as the COMS data. In order to retrieve the optimized SST at Northwest Pacific, we carried out a colocation process of COMS and in-situ buoy data to make coefficients of the MCSST algorithm through the new cloud masking including contaminant pixels and quality control processes of buoy data. And then, we have estimated the composite SST through the optimal interpolation method developed by National Institute of Meteorological Science(NIMS). We used four satellites SST data including COMS, NOAA-18/19(National Oceanic and Atmospheric Administration-18/19), and GCOM-W1(Global Change Observation Mission-Water 1). As a result, the root mean square error ofthe composite SST for the period of July 2012 to June 2013 was $0.95^{\circ}C$ in comparison with in-situ buoy data.