
통신위성우주산업연구회논문지 제3권 제2호 (K3-2-5)

26

Scheduling North-South Mirror Motion between Two
Consecutive Meteorological Images of COMS

Soojeon Lee, Won Chan Jung, and Jaehoon Kim

ABSTRACT

As a multi-mission GEO satellite, Communication, Ocean, and Meteorological Satellite (COMS) is scheduled to
be launched in the year 2009. COMS has three different payloads: Ka-band communication payload, Geostationary
Ocean Color Imager (GOCI) and Meteorological Imager (MI). Among the three payloads, MI and GOCI have several
conflict relationships; one of them is that if MI mirror moves vertically larger than 4 Line Of Sight (LOS) angle while
GOCI is imaging, image quality of GOCI becomes degraded. In this paper, MI scheduling algorithm to prevent
GOCI’s image quality degradation will be presented.

TKey WordsTT T: TMirror Motion, Meteorological Imager, COMS, Mission Planning SystemT

T1T. Introduction

As The major missions of Communication,

Ocean, and Meteorological Satellite (COMS) are
in the following three categories. [1]

(1) Satellite communications

- Next generation communication payload
technology and space qualification

- Broadband satellite multimedia test service

(2) Ocean observation (GOCI mission)

- Observation of marine ecology and
environment around the Korean peninsula

- Assessment of oceanic life and generation of
high quality fishery information

(3) Meteorological observation (MI mission)

- Continuous observation of high resolution
multi-channel meteorological images and
generation of meteorological elements

- Early detection of abnormal meteorological
phenomena such as typhoons, torrential rain,
yellow sand, sea fog, and so on.

- Generation of long term sea surface
temperature and cloud data

In COMS, there are issues when operating the

payloads simultaneously: especially between MI
and GOCI. One of them is that if MI mirror moves
vertically larger than 4 LOS angle (view angles
from Sub Satellite Point) while GOCI is imaging,
image quality of GOCI becomes degraded. In this
paper, MI scheduling algorithm to prevent GOCI’s
image quality degradation will be presented.

2. Overview

2.1. North-South MI Mirror Motion While Imaging

MI takes rectangular images around the Korea

peninsular. Before taking a meteorological image,
MI mirror is placed at the northwest part of the
requested image area.

The mirror performs imaging while moving to
the easternmost part of the image area
horizontally. After completing imaging for one
horizontal line, the mirror moves to the
westernmost part of the next line and imaging is
done for the next line again.

At the time when the imaging is completed, the
mirror will be placed at the southeast part of the
requested imaging area.

* Electronics and Telecommunications Research Institute 161 Gajeong-dong Yuseong-gu Daejeon, KOREA 305-700
Email: {soojeonlee, wcjung, HTUjhkim}@etri.re.krUTH

논문번호 : K3-2-5 , 접수일자 : 2008년 11 월 28일, 최종게재논문통보일자 : 2008 년 12 월 26일

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

 27

The north-south mirror motion while imaging is
too slow to degrade the image quality of GOCI.

2.2. North-South MI Mirror Motion between Two

Consecutive Imaging

(1) Automatic Movement

After completing imaging, the mirror
automatically moves to the nadir as quickly as
possible to protect the MI from the sunlight.
However, if this quick automatic movement is
done vertically more than 4 LOS angle while
GOCI is imaging, image quality of GOCI becomes
degraded.

(2) Manual Movement

Operator can handle the mirror not to move to
the nadir after completing imaging. This is
required in several cases. One of examples is
when the distance between nadir and the
northernmost part of the next image is too far. In
these cases, after completing imaging the mirror
moves to nadir automatically and then move
again to the northernmost part of the next image;
it takes time and may degrades the GOCI’s image
quality.

To prevent the disadvantage of automatic
movement, manual movement can be used. while
imaging, operator should send a telecommand to
move the mirror to a target latitude (e.g., the
northernmost part of the next image).

Even in this quick manual movement, however,
if the movement to the target latitude is done
vertically more than 4 LOS angle while GOCI is
imaging, image quality of GOCI becomes
degraded. Thus, in case of manual movement, if
the mirror should move more than 4 LOS angle, a
method introduced in section 3.2 shall be applied.

3. MI Mission Planning

3.1. MI sequence

A MI sequence consists of a black body

calibration (BB-cal) and images. The maximum
length of a MI sequence is 1800 seconds.

A MI sequence begins with BB-cal which takes
48 seconds. After BB-cal finishes, 20 seconds
should be passed without imaging and then the

first image can be taken. For the simplicity, in this
paper, we assume that a MI sequence begins at -
48s and finishes at 1754s.

3.2. Intermediate Step

P

1
PTo prevent MI mirror not to move to the nadir

after imaging, a telecommand called intermediate
step is used. By using intermediate step, the
mirror moves to the target latitude and pauses for
10 seconds. This prevents the quick and more-
than-4-LOS-angle movement of the mirror. Let us
call the mirror location after imaging location, and
the LOS angle the mirror moved after imaging
angle. Then, default intermediate step insertion
policy [2] is shown in Figure 1.

1) if |Angle| <= 4

Insert no Intermediate step

2) if 4 < |Angle| <= 8

Insert one Intermediate step at “Location + Angle*1/2"

3) if 8 < |Angle| <= 12

Insert one Intermediate step at “Location + Angle*1/3"

Insert one Intermediate step at “Location + Angle*2/3"

4) if 12 < |Angle| <= 16

Insert one Intermediate step at “Location + Angle*1/4"

Insert one Intermediate step at “Location + Angle*2/4"

Insert one Intermediate step at “Location + Angle*3/4"

5) if 16 < |Angle|

Insert one Intermediate step at “Location + Angle*1/5"

Insert one Intermediate step at “Location + Angle*2/5"

Insert one Intermediate step at “Location + Angle*3/5"

Insert one Intermediate step at “Location + Angle*4/5"

Figure 1: Data Spread

However, the above policy is not always used.

For example, even if the angle is larger than 8
LOS, the last image in a MI sequence is followed
by just one intermediate step.

4. User Requirement

4.1. Margin

There should be a margin between two

consecutive images in a MI sequence. The margin

TP

1
PT Hereafter, for the simplicity, horizontal movement of MI will not be mentioned; MI movement means vertical one.

통신위성우주산업연구회논문지 제3권 제2호

 28

Global
<<entity>>

+offset
+sequence
+frame_end
+margin
+first_image
+offset_finished_by_image
+idle_first_1
+idle_1
+idle_2
+idle_3
+idle_4
+idle_INT
+idle_image
+optimal

Image
<<boundary>>

+margin_to_start
+margin_from_start
+actual_start_time
+duration
+requested_start_time

+set_actual_start_time()
+get_actual_start_time()

Int_steps
<<boundary>>

+num_of_int_steps
+start_time_list

+set_start_time()
+get_start_time_list()

Image_unit
<<boundary>>

+image
+int_steps

+get_actual_start_time()
+get_start_time_list()

varies depending on the operator’s input.

4.2. Optimality

Operator wants to take images as many as

possible in a MI sequence. However, in some
cases, some of the requested images may not be
taken. For example, if 4 intermediate steps are
inserted between two consecutive images, there
should be interval at least 40 seconds and margin.
It means that some images should be delayed
due to the unexpected intermediate steps and
excluded from the MI sequence due to exceeding
the maximum length of the MI sequence (1800s).

Thus, if optimality should be pursued rather
than satisfying user requested imaging start time,
it is necessary to compress the imaging schedule
as much as possible in a MI sequence.

5. Algorithm Description

We describe the scheduling algorithm using

class diagram in 5.1 and pseudo code in 5.2.

5.1. Class Diagram
Following 4 classes are introduced in this

section. Figure 2 shows the class diagram of the
classes.

(1) Global

This defines the global variables used in the
scheduling algorithm.

(2) Image

This defines an image.

(3) Int_Steps

This defines intermediate step(s) followed by
an image.

(4) Image_unit

An image and the intermediate steps following
the image are considered an image unit.

Figure 2: Class Diagram

5.2. Pseudo Code
Above classes are described using pseudo

code with python syntax [3].

5.1. Global

class Global:

 offset=0 # offset time

 sequence=[-48, 1752]

 frame_end=0 # image frame end time

 margin=0

 first_image=True # flag indicating whether

current image is the first one in a MI

sequence

 offset_finished_by_image=False # flag

indicating whether current offset is

finished by image or INT

 idle_first_1=14 # idle time from the first

proportional command of a MI sequence (#1~)

 idle_1=6 # idle time from proportional

commands (#1~)

 idle_2=6 # idle time from proportional

commands (#2~)

 idle_3=10 # idle time from proportional

commands (#3~)

 idle_4=10 # idle time from proportional

commands (#4~)

 idle_INT=10 # idle time from proportional

commands (INT~)

 idle_image=10 # idle time from the end of

an image

 optimal=False # whether to pursue

optimality or not

5.2. Image

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

 29

class Image:

 def __init__(self, requested_start_time,

duration):

self.requested_start_time=requested_start_ti

me # requested imaging start time

 if Global.first_image==True:

 Global.first_image=False

self.margin_to_start=Global.idle_first_1+Glo

bal.idle_2

 elif

Global.offset_finished_by_image==True:

 self.margin_to_start=Global.idle_1

 elif

Global.offset_finished_by_image==False:

self.margin_to_start=Global.idle_1+Global.id

le_2

 self.margin_from_start=Global.idle_3 +

Global.idle_4

 self.actual_start_time=None

 self.duration=duration

 def set_actual_start_time(self, optimal):

 if optimal==False:

 if self.requested_start_time -

self.margin_to_start >= Global.offset:

self.actual_start_time=self.requested_start_

time

 else:

self.actual_start_time=Global.offset+self.margin_to_start
 elif optimal==True:

self.actual_start_time=self.margin_to_start

+ Global.offset

 Global.offset=self.actual_start_time +

self.margin_from_start

Global.frame_end=self.actual_start_time +

self.duration

 if Global.offset >= Global.sequence[1]

or Global.frame_end >= Global.sequence[1]:

 print 'ERROR: sequence over the

limit', Global.offset, Global.frame_end,

Global.sequence[1]

 return False

 if Global.frame_end <= Global.offset:

 print 'ERROR: too small image'

 return False

 return True

 def get_actual_start_time(self):

 return self.actual_start_time

5.3. Int_steps

class Int_steps:

 def __init__(self, num_of_int_steps):

self.num_of_int_steps=num_of_int_steps

 self.start_time_list=[]

 def set_start_time(self):

 if self.num_of_int_steps == 0 or

self.num_of_int_steps == 1: # finished by

not INT but image

Global.offset_finished_by_image=True

 else:# finished by not image but INT

Global.offset_finished_by_image=False

 if self.num_of_int_steps == 0:

 Global.offset=Global.frame_end +

Global.idle_image + Global.margin

 else:

 for i in range(self.num_of_int_steps):

 if Global.offset >= Global.sequence[1]:

 print 'ERROR: int_step sequence over the

limit', Global.offset, Global.sequence[1]

 return False

self.start_time_list.append(Global.offset)

 if i==0:

 Global.offset=Global.frame_end +

Global.idle_image + Global.margin

 else:

 Global.offset=Global.offset +

Global.idle_INT + Global.margin

 def get_start_time_list(self):

 return self.start_time_list

5.4. Image_unit

class Image_unit: # image + intermediate

steps

 def __init__(self, requested_start_time,

duration, num_of_int_steps, optimal):

self.image=Image(requested_start_time,

duration)

self.int_steps=Int_steps(num_of_int_steps)

 self.optimal=optimal

 def do(self):

 if

self.image.set_actual_start_time(self.optima

l)==False: # optimal==True, not optimal==False

 return False

 if self.int_steps.set_start_time()==False:

 return False

 def get_actual_start_time(self):

 return

통신위성우주산업연구회논문지 제3권 제2호

 30

self.image.get_actual_start_time()

 def get_start_time_list(self):

 return

self.int_steps.get_start_time_list()

6. Performance Evaluation

Figure 3 shows the image areas used for the

evaluations.

Figure 3: Types of Imaging Areas

Figure 4 shows the requested imaging start

times.

Figure 4: Requested Imaging Start Times

6.1. margin=5, optimality=True

real image start time 20

intermediate step start time [40, 430.87,

445.87]

real image start time 472.87

intermediate step start time [492.87,

730.202]

real image start time 757.202

intermediate step start time [777.202,

834.09799999999996, 849.09799999999996,

864.09799999999996]

real image start time 891.098

intermediate step start time

[911.09799999999996, 1651.9200000000001]

real image start time 1678.92

intermediate step start time

[1698.9200000000001]

5 images are all taken. But, to pursue
optimality, all the requested imaging start times
are shifted ahead except the first one.

6.2. margin=5, optimality=False

real image start time 20

intermediate step start time [40, 430.87,

445.87]

real image start time 476

intermediate step start time [496,

733.33199999999999]

real image start time 768

intermediate step start time [788,

844.89599999999996, 859.89599999999996,

874.89599999999996]

real image start time 901.896

intermediate step start time []

Only the first 4 images are taken. But, this

case does not pursue optimality so the first 3
requested imaging start times are not delayed.
The 4P

th
P requested imaging start time is delayed

due to the insertion of 3 intermediate steps
followed by the 3P

rd
P image.

6.3. margin=0, optimality=False

real image start time 20

intermediate step start time [40, 425.87,

435.87]

real image start time 476

intermediate step start time [496,

728.33199999999999]

real image start time 768

intermediate step start time [788,

839.89599999999996, 849.89599999999996,

859.89599999999996]

real image start time 899

intermediate step start time []

Only the first 4 images are taken. But, this

case pursues neither optimality nor margin so the
first 4 requested imaging start times are not
delayed.

7. Conclusion

The proposed algorithm automatically inserts

proper intermediate steps after an image.
Moreover, to include maximum number of images
in a MI sequence, it supports optimality function to

Scheduling North-South Mirror Motion between Two Consecutive Meteorological Images of COMS

 31

compress the imaging schedule as much as
possible.

Reference
[1] Specifications for Mission Planning Subsystem

in COMS SGCS, rev.D, ETRI TD, July 2007
[2] F.Souquet-Basiege, COMS Mission Planning

Specification (SYS-48), COMS.SPT.00005.
DP.T.ASTR (issue 5. version 2)

[3] http://www.python.org
.

U저 자

이 수 전(Soojeon Lee)

Received the BS degree in

Computer Science from

Korea University, Korea in

2003, and the MS degree in

Computer Engineering from

Information and Communica-

tions University (ICU),

Korea in 2005.

He has worked as Research Staff in

Electronics and Telecommunications Research

Institute (ETRI) from 2005.

His research interests include operation and

mission planning of satellite ground control

system.

정 원 찬(Won Chan JUNG)

Received BS degree in

Computer Science at

Henderson State University

in 1986 and Ph.D. degree

in Computer Science at

Louisiana State University

in 1992.

He joined ETRI in 1992 and

is a principal member of engineering staff.

He has been developing the satellite ground

control system for KOMPSAT-1 and KOMPSAT-2,

and now he is currently developing satellite

ground control system for COMS satellite.

김 재 훈(Jae-Hoon Kim)

Received the PhD degree in

computer engineering from

Chungbuk National University,

Cheongju, Korea in 2001.

He joined ETRI in 1983,

where he was involved in developpping the

Intelli-gent Network and KOREASAT Projects.

From 1992 to 1994, he was an OJT Engineer in

Martra-Marconi Space in the U.K. for the

KOREASAT Project. From 1995 to 1999, he

participated in the KOMPSAT-1 Ground Mission

Control Project as a Principle Member of

Engineering Staff in System Engineering.

From 2000 to 2005, he participated in the

KOMPSAT-2 Ground Mission Control Project as

Team Leader. He is now working for the COMS-

1, KOMPSAT-3 and KOMPSAT-5 Ground Mission

Control Projects as Team Leader.

His research interests are security in

satellite communications, fault diagnosis of

satellites using AI technologies, and system

modeling using objected-oriented technolo-

gies.

