• Title/Summary/Keyword: Ocean Radiation

Search Result 323, Processing Time 0.03 seconds

Introduction of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO)

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • Accurate ocean surface fluxes with high resolution are critical for understanding a mechanism of global climate. However, it is difficult to derive those fluxes by using ocean observation data because the number of ocean observation data is extremely small and the distribution is inhomogeneous. On the other hand. satellite data are characterized by the high density, the high resolution and the homogeneity. Therefore, it can be considered that we obtain accurate ocean surface by using satellite data. Recently we constructed ocean surface data sets mainly using satellite data. The data set is named by Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). Here, we introduce J-OFURO. The data set includes shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. Moreover, sea surface dynamic topography data are included in the data set. Radiation data sets covers western Pacific and eastern Indian Ocean because we use a Japanese geostationally satellite (GMS) to estimate radiation fluxes. On the other hand, turbulent heat fluxes are globally estimated. The constructed data sets are used and shows the effectiveness for many scientific studies.

  • PDF

Characteristics of Ocean Wave Radiation Patterns in a Dense Layer of Fluid (밀도층 유체에서 해양 방사파 패턴 특징)

  • Min, Eun-Hong;Choi, Ha-Yun;Kim, Young-Gyu;Paik, Kwang-Jun;Koo, Weon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.92-97
    • /
    • 2019
  • The sea is stratified with water that has different densities because of pressure, temperature, and salinity. When conducting studies of internal waves in the ocean, the fluid is assumed to have layers that have discrete densities. This assumption is made because it is difficult to achieve layers that exhibit gradual changes in the density of the water. In this study, we used previous studies on ocean waves and their radiation issues in the density layer fluid to investigate the characteristics of internal waves in the ocean and their radiation patterns induced by a moving body in a stratified fluid. We also studied the difference in wave radiation between the density gradient layer and the discrete density layer. We found that the wave radiation patterns depended on the velocity of the moving body and the change in the density of the water. The crest apex shift phenomenon was observed in the density gradient in the layer of fluid.

Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean (태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교)

  • Kang, Sung-Ho;Kim, Hyun-Choel;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.

Computation of the Mutual Radiation Impedance in the Acoustic Transducer Array: A Literature Survey

  • Paeng, Dong-Guk;Bok, Tae-Hoon;Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2E
    • /
    • pp.51-59
    • /
    • 2009
  • Mutual radiation impedance becomes more important in the design and analysis of acoustic transducers for higher power, better beam pattern, and wider bandwidth at low frequency sonar systems. This review paper focused on literature survey about the researches of mutual radiation impedance in the acoustic transducer arrays over 60 years. The papers of mutual radiation impedance were summarized in terms of transducer array structures on various baffle geometries such as planar, cylindrical, spherical, conformal, spheroidal, and elliptic cylindrical arrays. Then the computation schemes of solving conventional quadruple integral in the definition of mutual radiation impedance were surveyed including spatial convolution method, which reduces the quadruple integral to a double integral for efficient computation.

Radiation Problem Involving Two-layer Fluid in Frequency-Domain Numerical Wave Tank Using Artificial Damping Scheme (주파수 영역에서 인공감쇠기법을 활용한 복층 유체의 수치조파수조 방사 문제)

  • Min, Eun-Hong;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • There are two wave modes induced by an oscillating body on the free surface of a two-layer fluid: the barotropic and baroclinic modes. To investigate the generated waves composed of two modes, a radiation problem involving a heaving rectangular body was solved in a numerical wave tank. A new artificial damping zone scheme was developed and applied in the frequency-domain analysis. The performance of this damping scheme was compared with given radiation boundary conditions for various conditions. The added mass and radiation damping coefficients for the heaving rectangular body were also calculated for various fluid-density ratios.

Hybrid radiation technique of frequency-domain Rankine source method for prediction of ship motion at forward speed

  • Oh, Seunghoon;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.260-277
    • /
    • 2021
  • The appropriate radiation conditions of ship motion problem with advancing speed in frequency domain are investigated from a theoretical and practical point of view. From extensive numerical experiments that have been conducted for evaluation of the relevant radiation conditions, a hybrid radiation technique is proposed in which the Sommerfeld radiation condition and the free surface damping are mixed. Based on the comparison with the results of the translating and pulsating Green function method, the optimal damping factor of the hybrid radiation technique is selected, and the observed limitations of the proposed hybrid radiation technique are discussed, along with its accuracy obtained from the numerical solutions. Comparative studies of the forward-speed seakeeping prediction methods available confirm that the results of applying the hybrid radiation technique are relatively similar to those obtained from the translating and pulsating Green function method. This confirmation is made in comparisons with the results of solely applying either the free surface damping, or the Sommerfeld radiation condition. By applying the proposed hybrid radiation technique, the wave patterns, hydrodynamic coefficients, and motion responses of the Wigley III hull are finally calculated, and compared with those of model tests. It is found that, in comparison with the model test results, the three-dimensional Rankine source method adopting the proposed hybrid radiation technique is more robust in terms of accuracy and numerical stability, as well as in obtaining the forward speed seakeeping solution.

Housing Analysis for Ocean Radiation Detection (해양 방사선 탐지를 위한 하우징 분석)

  • Park, Gang-teak;Kim, Jong-Yeol;Jung, Hyun-kyu;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.714-715
    • /
    • 2017
  • Much of the interest in ocean radiation detection has been heightened as a lot of radioactivity has leaked to the ocean due to the accident at the Fukushima nuclear power plant in Japan. In the study, MCNP simulation for radiation detection in the ocean was performed. Unlike in the air, the marine environment must ensure the stability of the sensor from water depth, temperature, pressure, and salinity. In the marine environment, too much radiation is shielded. Therefore, it is an object to select a housing with a low radiation shielding ratio.

  • PDF

A hybrid algorithm of underwater structure vibration and acoustic radiation-propagation in ocean acoustic channel

  • Duan, Jia-xi;Zhang, Lin;Da, Liang-long;Sun, Xue-hai;Chen, Wen-jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.680-690
    • /
    • 2020
  • In ocean environment, the sound speed gradient of seawater has an important influence on far field sound propagation. The FEM/BEM is used to decouple the vibroacoustic radiation of the spherical shell, and the Green function of the virtual source chain is adopted for decoupling. For far field radiated Sound Pressure Level (SPL), the Beam Displacement Ray normal Mode (BDRM) is employed. The vibration and near-/far-field radiated SPL of spherical shell is analyzed in shallow sea uniform layer, negative/positive gradient, negative thermocline environment, and deep-sea sound channel. Results show that the vibroacoustic radiation of spherical shell acted at 300Hz can be analogous to dipole. When the radiated field of the spherical shell is dominated by large-grazing-angle waves, it can be analogous to vertically distributed dipole, and the far field radiated SPL is lower; while similar to horizontally distributed dipole if dominated by small-grazing-angle waves, and the far field SPL is high.

The Radiation Evaluation for Development of Solar System by Using Solar on the Sea (해상용 태양열 시스템 개발을 위한 일사량 평가)

  • 강일권
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.13-18
    • /
    • 2000
  • Recently due to the environmental pollution and the requirement for the substitute energy the interest for development of the solar energy system has been highly escalated It has been approved that the solar energy is a very useful on e because of purity and low cost. Some studies about the evaluation of solar radiation on the land has been carried out but few studies on the sea. This paper deals with a study on the evaluation of solar radiation on the sea. The experiments were carried out on the training vessel on the adjacent water of Korea Japan and China for twenty days. The distributions of solar radiation from the sea were changed into nonlinear in from according to the temperature. The solar radiation on the sea has a great influence on the velocity of wind as well as the temperature The distribuition of solar radiation has higher values on the track of the coastal sea than the open sea at same conditions.

  • PDF