DOI QR코드

DOI QR Code

Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean

태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교

  • Kang, Sung-Ho (Korea Polar Research Institute, Division of Polar Ocean Sciences) ;
  • Kim, Hyun-Choel (Korea Polar Research Institute, Division of Polar Ocean Sciences) ;
  • Ha, Sun-Yong (Korea Polar Research Institute, Division of Polar Ocean Sciences)
  • 강성호 (한국해양과학기술원 부설 극지연구소 극지해양과학연구부) ;
  • 김현철 (한국해양과학기술원 부설 극지연구소 극지해양과학연구부) ;
  • 하선용 (한국해양과학기술원 부설 극지연구소 극지해양과학연구부)
  • Received : 2018.09.18
  • Accepted : 2018.12.10
  • Published : 2018.12.30

Abstract

The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.

Keywords

References

  1. Aas EJ, Hokedal J, Hojerslev NK, Sandvik R, Sakshaug E (2002) Spectiral properties and UV-Attenuation in Arctic Marine waters. In: Hessen D (ed) UV Radiation and Arctic ecosystems. Springer, Berlin, pp 23-56
  2. Ballare CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photoch Photobio Sci 10(2):226-241 https://doi.org/10.1039/c0pp90035d
  3. Behrenfeld MJ, Lean DRS, Lee HII (1995) Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J Phycol 31(1):25-36 https://doi.org/10.1111/j.0022-3646.1995.00025.x
  4. Boelen P, De Boer MK, Kraay GW, Veldhuis MJW, Buma AGJ (2000) UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean. Mar Ecol-Prog Ser 193:1-9 https://doi.org/10.3354/meps193001
  5. Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids: their effets on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68-81 https://doi.org/10.4319/lo.1989.34.1.0068
  6. Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier, SanDiego, pp 91-151
  7. Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1. https://nsidc.org/data/NSIDC-0051/versions/1# Accessed 5 Jun 2018
  8. Corell R (2013) Arctic impact assessment: setting the stage. In: Berkman PA, Vylegzhanin AN (eds) Environmental security in Arctic Ocean. Springer, Berlin, pp 59-72
  9. Dahms HU, Dobretsov S, Lee JS (2011) Effects of UV radiation on marine ectotherms in polar regions. Comp Biochem Phys C 153(4):363-371
  10. Fountoulakis I, Bais AF, Tourpali K, Kragkos K, Misios S (2014) Projected changes in solar UV radiation in the Arctic and sub-Arctic Oceans: effects from changes in reflectivity, ice transmittance, clouds, and ozone. J Geophys Res-Atmos 119:8073-8090
  11. Frey KE, Perovich DK, Light B (2011) The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys Res Lett 38:L22501. doi:10.1029/2011GL049421
  12. Goncalves-Araujo R, Stedmon R, Heim B, Dubinenkov I, Kraberg A, Moiseev D, Bracher A (2015) From fresh to marine water: characterization and fate of dissolved organic matter in the Lena River delta region, Siberia. Front Mar Sci 2:108. doi:10.3389/fmars.2015.00108
  13. Hader D-P, Helbling EW, Williamson CE, Worrest RC (2011) Effects if UV radiation on aquatic ecosystems and interactions with climate change. Photoch Photobio Sci 10:242-260 https://doi.org/10.1039/c0pp90036b
  14. Hader D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobio Sci 6:267-285 https://doi.org/10.1039/B700020K
  15. Hader D-P, Williamson CE, Wangberg SA, Rautio M, Cose KC, Gao K, Helbling EW, Sinha RP, Worrest R (2015) Effects of solar UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobio Sci 14:108-126 https://doi.org/10.1039/C4PP90035A
  16. Harvey GR, Boran DA (1985) Geochemistry of humic substances in seawater. In: Aiken GR, KcKnight D, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment, and water: geochemisty, isolation and charcterization. Wiley-Interscience, New York, pp 233-247
  17. Helbling EW, Villafane V, Ferrario M, Holm-Hansen O (1992) Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar Ecol-Prog Ser 80:89-100 https://doi.org/10.3354/meps080089
  18. Karentz D (2001) The Effects of UV radiation in the marine environment. Eos T AM Geophys UN 82:477-479
  19. Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27(3):326-341 https://doi.org/10.1111/j.0022-3646.1991.00326.x
  20. Lean JL (2014) Evolution of total atmospheric ozone from 1900 to 2100 estimated with statistical models. J Atmos Sci 71:1956-1987 https://doi.org/10.1175/JAS-D-13-052.1
  21. Lei R, Zhang Z, Matero I, Cheng B, Li Q, Huang W (2012) Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Res 31:17325. doi:10.3402/polar.v31i0.17325
  22. Light B, Grenfell TC, Perovich DK (2008) Transmission and absorption of solar radiation by Arctic sea ice duering the melt season. J Geophys Res 113:C03023. doi:10.1029/2006JC003977
  23. Mann PJ, Spencer RGM, Hernes PJ, Six J, Aiken GR, Tank SE, McClelland JW, Butler KD, Dyda RY, Holmes RM (2016) Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements. Front Earth Sci 4:25. doi.org/10.3389/feart.2016.00025
  24. Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC, Veefkind P, Nash ER, Wohltmann I, Lehmann R, Froidevaux L, Poole LR, Schoeberl MR, Haffner DP, Davies J, Dorokhov V, Gernandt H, Johnson B, Kivi R, Kyro E, Larsen N, Levelt PF, Makshtas A, McElory T, Nakajima H, Parrondo MC (2011) Unprecedented Arctic ozone loss in 2011. Nature 478:469-475 https://doi.org/10.1038/nature10556
  25. Nelson NB, Siegel DA (2002). Chromophoric DOM in the open ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Elsevier, SanDiego, pp 547-578
  26. New M, Liverman D, Schroder H, Anderson K (2011) Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. Philos T R Soc A 369:6-19 https://doi.org/10.1098/rsta.2010.0303
  27. Nicolaus M, Petrich C, Hudson SR, Granskog M (2013) Variability of light transmission through Arctic land-fast sea ice during spring. Cryosphere 7:977-986 https://doi.org/10.5194/tc-7-977-2013
  28. Notz D, Haumann FA, Haak H, Jungclaus JH, Marotzke J (2013) Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology’s Earth system model. J Adv Mode Earth Syst 5(2):172-194
  29. Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43:1297-1304 https://doi.org/10.4319/lo.1998.43.6.1297
  30. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 p
  31. Perovich DK (2006) The ineraction of ultraviolet light with Arctic sea ice during SHEBA. Ann Glaciol 44:47-52. doi:10.3189/172756406781811330
  32. Perovich DK, Roesler CS, Pegau WS (1998) Variability in Arctic sea ice optical properties. J Geophys Res 103(C1):1193-1208 https://doi.org/10.1029/97JC01614
  33. Pugach SP, Pipko II, Shakhova NE, Shirshin EA, Perminova IV, Gustafsson O, Bondur VG, Ruban AS, Semiletov IP (2018) Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003-2011). Ocean Sci 14:87-103 https://doi.org/10.5194/os-14-87-2018
  34. Spencer RGM, Aiken GR, Butler KD, Dornblaser MM, Striegl RG, Hernes PJ (2009) Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: a case study of the Yukon River, Alaska. Geophys Res Lett. 36:L06401. doi.org/10.1029/2008GL036831
  35. Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar Chem 124:108-118 https://doi.org/10.1016/j.marchem.2010.12.007
  36. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502. doi:10.1029/2012GL052676
  37. Taalas P, Kaurola J, Kylling A, Shindell D, Sausen R, Dameris M, Grewe V, Herman J, Damski J, Steil B (2000) The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophys Res Lett 27:1127-1130 https://doi.org/10.1029/1999GL010886
  38. Thomson PG, Davidson AT, Cadman N (2008) Temporal changes in effects of ambient UV radiation on natural communities of Antarctic marine protists. Aquat Microb Ecol 52:131-147 https://doi.org/10.3354/ame01201
  39. Vernet M, Whitehead K (1996) Pelease of ultravioletabsorbing compounds by the red-tide dinoflagellate, Lingulodinium polyedra. Mar Biol 127:35-44 https://doi.org/10.1007/BF00993641
  40. Walker SA, Amon RMW, Stedmon CA (2013) Variations in high-latitude riverine fluorescent dissolved organic matter: a comparison of large Arctic rivers. J Geophys Res-Biogeo 118:1689-1702 https://doi.org/10.1002/2013JG002320
  41. Whitehead K, Vernet M (2000) Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay. Limnol Oceanogr 45:1788-1796 https://doi.org/10.4319/lo.2000.45.8.1788
  42. Winther J-G, Edvardsen K, Gerland S, Hamre B (2004) Surface reflectance of sea ice and under-ice irradiance in Kongsfjorden, Svalbard. Polar Res 23:115-118 https://doi.org/10.1111/j.1751-8369.2004.tb00134.x
  43. WMO (2011) Scientific assessment of ozone depletion: 2010. World Meteorological Organization, Geneva, Global Ozone Research and Monitoring Project Report 52, 231 p
  44. Zepp RG, Callaghan TV, Erickson III DJ (2003) Interactive effects of ozone depletion and climate change on biogeochemical cycles. Photochem Photobio Sci 2:51-61 https://doi.org/10.1039/b211154n
  45. Zhang J, Lindsay R, Schweiger A, Steele M (2013) The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys Res Lett 40:720-726 https://doi.org/10.1002/grl.50190
  46. Zhao J, Li T (2010) Solar radiation penetrating through sea ice under very low solar altitude. J Ocean Univ China 9(2):116-122 https://doi.org/10.1007/s11802-010-0116-7