• Title/Summary/Keyword: Observation-error model

Search Result 256, Processing Time 0.021 seconds

Prediction of Sea Water Temperature by Using Deep Learning Technology Based on Ocean Buoy (해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Byeon, Seong-Hyeon;Kim, Young-Won
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM was required for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.

Media Access Control Protocol Considering MANET of Underwater Environment (수중 환경의 MANET을 고려한 매체 접근 제어 프로토콜)

  • Shin, Seung-Won;Yun, Nam-Yeol;Lee, Jin-Young;Lee, Seung-Joo;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.97-107
    • /
    • 2013
  • Underwater wireless communication systems can be useful for underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, vessel sinking exploration, and so on. However, unlike terrestrial wireless communication, underwater wireless communication should consider factors such as long propagation delay, limited transmission capacity, high bit-error rate due to potential loss in power, ambient noise, man-made noise, multi-path, etc., because of the inherent characteristics of water. Thus, in this paper, we propose a suitable media access control(MAC) protocol that applies a combination of the ALOHA MAC protocol and the CSMA/CA MAC protocol to underwater environment. We further propose a mathematical analysis model to evaluate performance. We also verify performance improvement in the proposed scheme in comparison with existing MAC protocols.

ORBIT DETERMINATION OF GPS AND KOREASAT 2 SATELLITE USING ANGLE-ONLY DATA AND REQUIREMENTS FOR OPTICAL TRACKING SYSTEM (GPS 위성과 무궁화 2호의 광학관측데이터를 이용한 궤도 결정 및 정밀 궤도 결정을 위한 광학관측시스템 제안)

  • Lee, Woo-Kyoung;Lim, Hyung-Chul;Park, Pil-Ho;Youn, Jae-Hyuk;Yim, Hong-Suh;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.221-232
    • /
    • 2004
  • Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLB and SGP4/SDP4 orbit propagation model.. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory) and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

Enhancement of Evoked Potential Waveform using Delay-compensated Wiener Filtering (지연보상 위너 필터링에 의한 유발전위 파형개선)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.261-269
    • /
    • 2013
  • In this paper, the evoked potential(EP) was represented by additive delay model to comply with the variational noisy response of stimulus-event synchronization. The hybrid method of delay compensated-Wiener filtered-ensemble averaging(DWEA) was proposed to enhance the EP signal distortion occurred during averaging procedure due to synchronization timing mismatch. The performance of DWEA has been tested by surrogated simulation, which is composed of synthesized arbitrary delay and arbitrary level of added noise. The performance of DWEA is better than those of Wiener filtered-ensemble averaging and of conventional ensemble averaging. DWEA is endurable up to added noise gain of 7 for 10 % mean square error limit. Throughout the experimentation observation, it has been demonstrated that DWEA can be applied to enhance the evoked potential having the synchronization mismatch with added noise.

Numerical Investigation, Calibration Method of the Interaction between Ieodo Ocean Research Station and Ocean Current (수치해석을 이용한 이어도 기지 구조물이 해수 유동에 미치는 영향 분석과 해류 관측 평가 및 보정방안 연구)

  • Hong, Woo-Ram;Shim, Jae-Seol;Min, In-Ki;Kim, Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.476-483
    • /
    • 2007
  • One of the main function of Ieodo Ocean Research Station is to service the information about the weather and fishing grounds condition which are collected through calibrating convection flow and ocean current around the station. However, due to the influence of the station's structure below sea level, it is difficult to obtain the exact flow data. Therefore, it is required to research on the effect of the structure and the method to evaluate and revise the observed data. In this paper, as a basic study, it deals with the algorithm that simulate the interaction between ocean current and the station structure, followed by discussions about the way to applicate the algorithm. Through 3-dimensional computational fluid dynamics analyses (using Navier-Stokes equations with K-turbulence model), the influence of the station and submerged rocks are quantitatively evaluated, and we would suggest methods how to obtain accurate flow information from the measured rough data.

Minimum Temperature Mapping in Complex Terrain Considering Cold Air Drainage (냉기침강효과를 고려한 복잡지형의 최저기온 분포 추정)

  • 정유란;서형호;황규홍;황범석;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 2002
  • Site-specific minimum temperature forecasts are critical in a short-term decision making procedure for preventive measures as well as a long-term strategy such as site selection in fruits industry. Nocturnal cold air pools frequently termed in mountainous areas under anticyclonic systems are very dangerous to the flowering buds in spring over Korea, but the spatial resolution to detect them exceeds the current weather forecast scale. To supplement the insufficient spatial resolution of official forecasts, we developed a GIS - assisted frost risk assesment scheme for using in mountainous areas. Daily minimum temperature data were obtained from 6 sites located in a 2.1 by 2.1 km area with complex topography near the southern edge of Sobaek mountains during radiative cooling nights in spring 2001. A digital elevation model with a 10 m spatial resolution was prepared for the entire study area and the cold air inflow was simulated for each grid cell by counting the number of surrounding cells coming into the processing cell. Primitive temperature surfaces were prepared for the corresponding dates by interpolating the Korea Meteorological Administration's automated observational data with the lapse rate correction. The cell temperature values corresponding to the 6 observation sites were extracted from the primitive temperature surface, and subtracted from the observed values to obtain the estimation error. The errors were regressed to the flow accumulation at the corresponding cells, delineating a statistically significant relationship. When we applied this relationship to the primitive temperature surfaces of frost nights during April 2002, there was a good agreement with the observations, showing a feasibility of site-specific frost warning system development in mountainous areas.

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information (정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석)

  • Choi, Dae Sung;Kim, Jae Hwan;Park, Hyungmin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.583-598
    • /
    • 2015
  • This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST (Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정)

  • Jang, Wonjin;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.123-132
    • /
    • 2019
  • This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.

Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS) (산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발)

  • Lee, HoonTaek;WON, Myoung-Soo;YOON, Suk-Hee;JANG, Keun-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.21-36
    • /
    • 2019
  • Dead fuel moisture content is a key variable in fire danger rating as it affects fire ignition and behavior. This study evaluates simple regression models estimating the moisture content of standardized 10-h fuel stick (10-h FMC) at three sites with different characteristics(urban and outside/inside the forest). Equilibrium moisture content (EMC) was used as an independent variable, and in-situ measured 10-h FMC was used as a dependent variable and validation data. 10-h FMC spatial distribution maps were created for dates with the most frequent fire occurrence during 2013-2018. Also, 10-h FMC values of the dates were analyzed to investigate under which 10-h FMC condition forest fire is likely to occur. As the results, fitted equations could explain considerable part of the variance in 10-h FMC (62~78%). Compared to the validation data, the models performed well with R2 ranged from 0.53 to 0.68, root mean squared error (RMSE) ranged from 2.52% to 3.43%, and bias ranged from -0.41% to 1.10%. When the 10-h FMC model fitted for one site was applied to the other sites, $R^2$ was maintained as the same while RMSE and bias increased up to 5.13% and 3.68%, respectively. The major deficiency of the 10-h FMC model was that it poorly caught the difference in the drying process after rainfall between 10-h FMC and EMC. From the analysis of 10-h FMC during the dates fire occurred, more than 70% of the fires occurred under a 10-h FMC condition of less than 10.5%. Overall, the present study suggested a simple model estimating 10-h FMC with acceptable performance. Applying the 10-h FMC model to the automatic mountain weather observation system was successfully tested to produce a national-scale 10-h FMC spatial distribution map. This data will be fundamental information for forest fire research, and will support the policy maker.

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.