• Title/Summary/Keyword: Observation studies

Search Result 1,656, Processing Time 0.038 seconds

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

The Manufacturing Techniques of the Stone Standing Maitreya Bodhisattva Bronze Wind Chimes of Gwanchoksa Temple, Nonsan (자연과학적 분석을 통한 논산 관촉사 석조미륵보살입상(論山 灌燭寺 石造彌勒菩薩立像) 청동풍탁(靑銅風鐸)의 제작 기법 연구)

  • LEE, Soyeon;CHUNG, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.22-37
    • /
    • 2021
  • The wind chime is a longstanding Jangeomgu (majestic article) found in Korea, China, and Japan. However, basic research on wind chimes is currently inadequate as it is difficult to estimate the time of production, and there are few relics. Therefore, this research morphologically classifies the eight bronze wind chimes decorating the baldachin of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan. Based on this, the manufacturing techniques and production period are scientifically demonstrated. The synthesis of the research results reveals that the structure and characteristics of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan differ depending on their location on the baldachin. The four large-sized wind chimes on the lower-baldachin were manufactured by casting a Cu-Sn-Pb alloy, and they are estimated to have been made during the early period of Goryeo. The two medium-sized wind chimes of the upper-baldachin's northern direction were manufactured through forging a Cu-Sn or Cu-Sn-Pb alloy, and they appear to have a similar structure to the cylindrical wind chimes appearing during the latter period of Goryeo and the Joseon period. The two small-sized wind chimes of the upper-baldachin's southern direction were manufactured by casting a Cu-Sn-Pb alloy containing Zn, and based on the chemical composition of the alloy and the shape of the clapper, they are estimated to have been manufactured during the latter period of Joseon. Through the observation of microstructures and a chemical composition analysis, it is demonstrated that two wind chimes of the lowerbaldachin were manufactured by casting and slow cooling the alloy with an alloy ratio of Cu:Sn:Pb≒80:15:5. In addition, it is estimated that the wind chimes of the upper-baldachin's northeast direction were manufactured by forging an alloy of Cu-Sn with a similar alloy ratio to that of forged high tin bronze. The results of a comparative analysis of prior research on domestic wind chimes confirm that two wind chimes of the lower-baldachin have a similar composition ratio to the wind chime excavated from Wolnamsaji in Gangjin, containing an amount of tin that corresponds with ancient records. Having a similar alloy ratio to forged high tin bronze, the wind chimes of the upper-baldachin's northeast direction are the only instances among all of the wind chimes that have been examined to date that were manufactured using this forging method. The purpose of this research is to collect baseline data to verify and classify the manufacturing period of wind chimes according to their morphological characteristics based on scientific evidence. It is hoped that this data can be utilized for the restoration and conservation processes of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan.

Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data (블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • This study aimed to evaluate preferences of Bukhansan dulegil using sentiment analysis, a natural language processing technique, to derive preferred and non-preferred factors. Therefore, we collected blog articles written in 2019 and produced sentimental scores by the derivation of positive and negative words in the texts for 21 dulegil courses. Then, content analysis was conducted to determine which factors led visitors to prefer or dislike each course. In blogs written about Bukhansan dulegil, positive words appeared in approximately 73% of the content, and the percentage of positive documents was significantly higher than that of negative documents for each course. Through this, it can be seen that visitors generally had positive sentiments toward Bukhansan dulegil. Nevertheless, according to the sentiment score analysis, all 21 dulegil courses belonged to both the preferred and non-preferred courses. Among courses, visitors preferred less difficult courses, in which they could walk without a burden, and in which various landscape elements (visual, auditory, olfactory, etc.) were harmonious yet distinct. Furthermore, they preferred courses with various landscapes and landscape sequences. Additionally, visitors appreciated the presence of viewpoints, such as observation decks, as a significant factor and preferred courses with excellent accessibility and information provisions, such as information boards. Conversely, the dissatisfaction with the dulegil courses was due to noise caused by adjacent roads, excessive urban areas, and the inequality or difficulty of the course which was primarily attributed to insufficient information on the landscape or section of the course. The results of this study can serve not only serve as a guide in national parks but also in the management of nearby forest green areas to formulate a plan to repair and improve dulegil. Further, the sentiment analysis used in this study is meaningful in that it can continuously monitor actual users' responses towards natural areas. However, since it was evaluated based on a predefined sentiment dictionary, continuous updates are needed. Additionally, since there is a tendency to share positive content rather than negative views due to the nature of social media, it is necessary to compare and review the results of analysis, such as with on-site surveys.

A Study on the Importance and Priorities of the Investment Determinants of Startup Accelerators (스타트업 액셀러레이터 투자결정요인의 중요도 및 우선순위에 대한 연구)

  • Heo, Joo-yeun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.6
    • /
    • pp.27-42
    • /
    • 2020
  • Startup accelerators have emerged as new investment entities that help early startups, which are not easy to survive continuously due to lack of funds, commercialization capabilities, and experiences. As their positive performance on early startups and the ecosystem has been proven, the number of early startups which want to receive their investment is also increasing. However, they are vaguely preparing to attract accelerators' investment because they do not have any information on what factors the accelerators consider important. In addition, researches on startup accelerators are also at an early level, so there are no remarkable prior studies on factors that decide on investment. Therefore, this study aims to help startups prepare for investment attraction by looking at what factors are important for accelerators to invest, and to provide meaningful implications to academia. In the preceding study, we derived five upper level categories, 26 lower level accelerators' investment determinants through the qualitative meta-synthesis method, secondary data analysis, observation on US accelerators and in-depth interviews. In this study, we want to derive important implications by deriving priorities of the accelerators' investment determinants. Therefore, we used AHP that are evaluated as the suitable methodology for deriving importance and priority. The analysis results show that accelerators value market-related factors most. This means that startups that are subject to investment by accelerators are early-stage startups, and many companies have not fully developed their products or services. Therefore, market-related factors that can be evaluated objectively seem to be more important than products (or services) that are still ambiguous. Next, it was found that the factors related to the internal workforce of startups are more important. Since accelerators want to develop their businesses together with start-ups and team members through mentoring, ease of collaboration with them is very important, which seems to be important. The overall priority analysis results of the 26 investment determinants show that 'customer needs' and 'founders and team members' understanding of customers and markets' (0.62) are important and high priority factors. The results also show that startup accelerators consider the customer-centered perspective very important. And among the factors related to startups, the most prominent factor was the founder's openness and execution ability. Therefore, it can be confirmed that accelerators consider the ease of collaboration with these startups very important.

Factors Influencing the Activation of Brown Adipose Tissue in 18F-FDG PET/CT in National Cancer Center (양전자방출단층촬영 시 갈색지방조직 활성화에 영향을 미치는 요인 분석)

  • You, Yeon Wook;Lee, Chung Wun;Jung, Jae Hoon;Kim, Yun Cheol;Lee, Dong Eun;Park, So Hyeon;Kim, Tae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Purpose Brown fat, or brown adipose tissue (BAT), is involved in non-shivering thermogenesis and creates heat through glucose metabolism. BAT activation occurs stochastically by internal factors such as age, sex, and body mass index (BMI) and external factors such as temperature and environment. In this study, as a retrospective, electronic medical record (EMR) observation study, statistical analysis is conducted to confirm BAT activation and various factors. Materials and Methods From January 2018 to December 2019, EMR of patients who underwent PET/CT scan at the National Cancer Center for two years were collected, a total of 9155 patients were extracted, and 13442 case data including duplicate scan were targeted. After performing a univariable logistic regression analysis to determine whether BAT activation is affected by the environment (outdoor temperature) and the patient's condition (BMI, cancer type, sex, and age), A multivariable regression model that affects BAT activation was finally analyzed by selecting univariable factors with P<0.1. Results BAT activation occurred in 93 cases (0.7%). According to the results of univariable logistic regression analysis, the likelihood of BAT activation was increased in patients under 50 years old (P<0.001), in females (P<0.001), in lower outdoor temperature below 14.5℃ (P<0.001), in lower BMI (P<0.001) and in patients who had a injection before 12:30 PM (P<0.001). It decreased in higher BMI (P<0.001) and in patients diagnosed with lung cancer (P<0.05) In multivariable results, BAT activation was significantly increased in patients under 50 years (P<0.001), in females (P<0.001) and in lower outdoor temperature below 14.5℃ (P<0.001). It was significantly decreased in higher BMI (P<0.05). Conclusion A retrospective study of factors affecting BAT activation in patients who underwent PET/CT scan for 2 years at the National Cancer Center was conducted. The results confirmed that BAT was significantly activated in normal-weight women under 50 years old who underwent PET/CT scan in weather with an outdoor temperature of less than 14.5℃. Based on this result, the patient applied to the factor can be identified in advance, and it is thought that it will help to reduce BAT activation through several studies in the future.

Unusual Delay of Heading Date in the 2022 Rice Growth and Yield Monitoring Experiment (2022년도 벼 작황시험에서 관찰된 출수기 지연 현상 보고)

  • HyeonSeok, Lee;WoonHa, Hwang;SeoYeong, Yang;Yeongseo, Song;WooJin, Im;HoeJeong, Jeong;ChungGen, Lee;HyeongJoo, Lee;JongTae, Jeong;JongHee, Shin;MyoungGoo, Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • It is likely that the heading would occur early when air temperature increases. In 2022, however, the heading date was delayed unusually, e.g., by 3 to 5 days although temperature during the vegetative growth stage was higher than normal years. The objective of this study was to identify the cause of such event analyzing weather variables including average temperature, sunshine hours, and day-length for each growth stage. The observation data were collected for medium-late maturing varieties, which has been grown at crop yield experiment sites including Daegu, Andong, and Yesan. The difference in heading date was compared between growing seasons in 2021 and 2022 because crop management options, e.g., the cultivars and cultivation methods, were identical at those sites during the study period. It appeared that the heading date was delayed due to the difference in temperature responsiveness under a given day-length condition The effect of the temperature increase on the heading date differed between the periods during which when the day-length was more than 14.3 hours before and after the summer-solstice.. The effect of the temperature decrease during the period from which the day-length decreased to less than 14.3 hours to the heading date was relatively greater. This merits further studies to examine the response of rice to the temperature change under different day-length and sunshine duration in terms of heading.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

A case study of blockchain-based public performance video platform establishment: Focusing on Gyeonggi Art On, a new media art broadcasting station in Gyeonggi-do (블록체인 기반 공연영상 공공 플랫폼 구축 사례 연구: 경기도 뉴미디어 예술방송국 경기아트온을 중심으로)

  • Lee, Seung Hyun
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.108-126
    • /
    • 2023
  • This study explored the sustainability of a blockchain-based cultural art performance video platform through the construction of Gyeonggi Art On, a new media art broadcasting station in Gyeonggi-do. In addition, the technical limitations of video content transaction using block chain, legal and institutional issues, and the protection of personal information and intellectual property rights were reviewed. As for the research method, participatory observation methods such as in-depth interviews with developers and operators and participation in meetings were conducted. The researcher participated in and observed the entire development process, including designing and developing blockchain nodes, smart contracts, APIs, UI/UX, and testing interworking between blockchain and content distribution services. Research Question 1: The results of the study on 'Which technology model is suitable for a blockchain-based performance video content distribution public platform?' are as follows. 1) The blockchain type suitable for the public platform for distribution of art performance video contents based on the blockchain is the private type that can be intervened only when the blockchain manager directly invites it. 2) In public platforms such as Gyeonggi ArtOn, among the copyright management model, which is an art based on NFT issuance, and the BC token and cloud-based content distribution model, the model that provides content to external demand organizations through API and uses K-token for fee settlement is suitable. 3) For public platform initial services such as Gyeonggi ArtOn, a closed blockchain that provides services only to users who have been granted the right to use content is suitable. Research question 2: What legal and institutional problems should be reviewed when operating a blockchain-based performance video distribution public platform? The results of the study are as follows. 1) Blockchain-based smart contracts have a party eligibility problem due to the nature of blockchain technology in which the identities of transaction parties may not be revealed. 2) When a security incident occurs in the block chain, it is difficult to recover the loss because it is unclear how to compensate or remedy the user's loss. 3) The concept of default cannot be applied to smart contracts, and even if the obligations under the smart contract have already been fulfilled, the possibility of incomplete performance must be reviewed.