DOI QR코드

DOI QR Code

Development of a deep neural network model to estimate solar radiation using temperature and precipitation

온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발

  • Kang, DaeGyoon (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 강대균 (서울대학교 협동과정 농림기상학) ;
  • 현신우 (서울대학교 식물생산과학부) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2019.06.07
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

일사량은 자연 생태계와 농업 생태계에서 에너지 수지와 물 순환을 추정하는데 중요한 변수이다. 일별 일사량을 추정하기 위해 심층 신경망(DNN) 모델이 개발되었다. 일조시간 등의 변수보다 기상 관측소에서의 가용성이 더 높은 온도와 강수량이 심층 신경망 모델의 입력 자료로 사용되었다. five-fold crossvalidation 을 사용하여 심층 신경망을 훈련시키고 검증하였다. 국내 15 개의 기상 관측소에서 30 년 이상 장기간의 기상 자료가 수집되었다. Cross-validation을 통해 얻어진 심층 신경망 모델은 수원 지역 기상 관측소의 일별 일사량 추정치에 대해 비교적 작은 RMSE($3.75MJ\;m^{-2}\;d^{-1}$) 값을 가졌다. 심층 신경망 모델은 수원 지역 기상 관측소의 일사량의 변위의 약 68%를 설명했다. 1985 년과 1998 년의 일사량 관측값은 일조시간에 비해 상당히 낮은 값이 관측되었다. 이는 후속 연구에서 일사량 관측 데이터의 품질 평가가 필요할 것임을 시사했다. 해당 연도의 데이터를 분석에서 제외했을 때, 심층 신경망 모델의 추정값은 통계적 수치가 약간 높게 나타났다. 예를 들어, $R^2$ 와 RMSE 의 값은 각각 0.72 와 $3.55MJ\;m^{-2}\;d^{-1}$ 이었다. 심층 신경망 모델은 기온과 강수량을 통해 일사량을 추정하는데 유용하며, 이는 미래 기후 시나리오 자료에 대해서 활용할 수 있을 것이다. 따라서, 공간에 대한 제약이 완화된 심층 신경망 모델은 작물 모델의 입력 자료로 일사량이 필요한 작물 생산성에 대한 기후 변화 영향 평가에 유용하게 활용될 수 있을 것이다.

Keywords

NRGSBM_2019_v21n2_85_f0001.png 이미지

Fig. 1. Weather stations where meteorological data were collected. Weather stations marked by a blue circle were for train data. Weather station marked by a red star is for test data.

NRGSBM_2019_v21n2_85_f0002.png 이미지

Fig. 2. Rectified Linear Units (ReLU) function. X and Y indicate independent and dependent variables, respectively.

NRGSBM_2019_v21n2_85_f0003.png 이미지

Fig. 3. Box plots of daily solar radiation observed at the weather station located in Suwon from 1982-2017.

NRGSBM_2019_v21n2_85_f0004.png 이미지

Fig. 4. Distributions of daily solar radiation and sunshine duration observed at the Suwon weather station in (A) 1985, (B) 1998, (C) 1997 and (D) 2015.

NRGSBM_2019_v21n2_85_f0005.png 이미지

Fig. 5. Comparison of root mean square error (RMSE) for solar radiation estimates using five-fold crossvalidation.

NRGSBM_2019_v21n2_85_f0006.png 이미지

Fig. 6. The scatter plot of measured and estimated solar radiation. The measurement data were obtained from the Suwon weather station from 1982-2017. The deep neural network model was used to estimate daily solar radiation.

NRGSBM_2019_v21n2_85_f0007.png 이미지

Fig. 7. Box plots of errors for daily solar radiation estimates using the deep neural network model by a range of daily solar radiation observation at the Suwon weather station.

NRGSBM_2019_v21n2_85_f0008.png 이미지

Fig. 8. Year-by-year comparison of R2 values for daily solar radiation estimates using the deep neural network model at the Suwon weather station.

NRGSBM_2019_v21n2_85_f0009.png 이미지

Fig. 9. Scatter plots of daily solar radiation measurements and estimates. The measurements were obtained at the Suwon weather station in (A) 1997, (B) 2015, (C) 1985 and (D) 1998. The daily solar radiation was estimated using the deep neural network model.

NRGSBM_2019_v21n2_85_f0010.png 이미지

Fig. 10. The scatter plot of measured and estimated solar radiation. The measurement data were obtained from the Suwon weather station from 1982-2017 except for 1985 and 1998 where the maximum values of solar radiation were relatively lower than others. The deep neural network model was used to estimate daily solar radiation.

References

  1. Antonopoulos, V. Z., D. M. Papamichail, V. G. Aschonitis, and A. V. Antonopoulos, 2019: Solar radiation estimation methods using ANN and empirical models. Computers and Electronics in Agriculture 160, 160-167. https://doi.org/10.1016/j.compag.2019.03.022
  2. Azevedo, J., and S. Crisostomo, 2016: Weather stations-assisted barometric altimeter for Android: Interpolation techniques for improved accuracy. In 2016 IEEE Sensors Applications Symposium (SAS), IEEE, 1-6.
  3. Bayrakci, H. C., C. Demircan, and A. Kecebas, 2018: The development of empirical models for estimating global solar radiation on horizontal surface: A case study. Renewable and Sustainable Energy Reviews 81, 2771-2782. https://doi.org/10.1016/j.rser.2017.06.082
  4. Bojanowski, J. S., A. Vrieling, and A. K. Skidmore, 2014: A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe. Solar Energy 99, 152-171. https://doi.org/10.1016/j.solener.2013.11.007
  5. Bou-Rabee, M., S. A. Sulaiman, M. S. Saleh, and S. Marafi, 2017: Using artificial neural networks to estimate solar radiation in Kuwait. Renewable and Sustainable Energy Reviews 72, 434-438. https://doi.org/10.1016/j.rser.2017.01.013
  6. Chen, J.-L., L. He, H. Yang, M. Ma, Q. Chen, S.-J. Wu, and Z.-l. Xiao, 2019: Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China. Renewable and Sustainable Energy Reviews 108, 91-111. https://doi.org/10.1016/j.rser.2019.03.033
  7. Cho, Y. H., S. J. Cho, H. S. Kwon, and D. H. Yoo, 2019: Building an agrophotovoltaic system and suggesting activation plans. The Journal of Information Systems 28(1), 115-132. https://doi.org/10.5859/KAIS.2019.28.1.115
  8. Choi, M.-H., and J.-I. Yun, 2009: On recent variations in solar radiation and daily maximum temperature in summer. Korean Journal of Agricultural and Forest Meteorology 11(4), 185-191. https://doi.org/10.5532/KJAFM.2009.11.4.185
  9. Choi, M.-H., J.-I. Yun, U.-R. Chung, and K.-H. Moon, 2010: Performance of Angstrom-Prescott coefficients under different time scales in estimating daily solar radiation in South Korea. Korean Journal of Agricultural and Forest Meteorology 12(4), 232-237. https://doi.org/10.5532/KJAFM.2010.12.4.232
  10. Dodson, R., and D. Marks, 1997: Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate research 8(1), 1-20. https://doi.org/10.3354/cr008001
  11. Elsheikh, A. H., S. W. Sharshir, M. A. Elaziz, A. Kabeel, W. Guilan, and Z. Haiou, 2019: Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy 180, 622-639. https://doi.org/10.1016/j.solener.2019.01.037
  12. Fan, J., B. Chen, L. Wu, F. Zhang, X. Lu, and Y. Xiang, 2018: Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy 144, 903-914. https://doi.org/10.1016/j.energy.2017.12.091
  13. Fan, J., L. Wu, F. Zhang, H. Cai, W. Zeng, X. Wang, and H. Zou, 2019: Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renewable and Sustainable Energy Reviews 100, 186-212. https://doi.org/10.1016/j.rser.2018.10.018
  14. Guermoui, M., A. Rabehi, K. Gairaa, and S. Benkaciali, 2018: Support vector regression methodology for estimating global solar radiation in Algeria. The European Physical Journal Plus 133(1), 22. https://doi.org/10.1140/epjp/i2018-11845-y
  15. Hyun, S., and K. S. Kim, 2016: Assessment of the Angstrom-Prescott coefficients for estimation of solar radiation in Korea. Korean Journal of Agricultural and Forest Meteorology 18(4), 221-232. https://doi.org/10.5532/KJAFM.2016.18.4.221
  16. Jeong, D. I., A. St-Hilaire, Y. Gratton, C. Belanger, and C. Saad, 2017: A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches. Renewable energy 103, 70-80. https://doi.org/10.1016/j.renene.2016.11.022
  17. Kaba, K., M. Sarigul, M. Avci, and H. M. Kandirmaz, 2018: Estimation of daily global solar radiation using deep learning model. Energy 162, 126-135. https://doi.org/10.1016/j.energy.2018.07.202
  18. Kaskaoutis, D., and J. Polo 2019: Editorial for the Special Issue "Solar Radiation, Modeling, and Remote Sensing". Remote Sensing 11(10), 1198. https://doi.org/10.3390/rs11101198
  19. Khosravi, A., R. Koury, L. Machado, and J. Pabon, 2018: Prediction of hourly solar radiation in abu musa island using machine learning algorithms. Journal of Cleaner Production 176, 63-75. https://doi.org/10.1016/j.jclepro.2017.12.065
  20. Kim, J., W. Sang, P. Shin, H. Cho, M. Seo, B. Yoo, and K. S. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of crop science and biotechnology 18(4), 257-264. https://doi.org/10.1007/s12892-015-0103-z
  21. McSweeney, C., R. Jones, R. W. Lee, and D. Rowell, 2015: Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dynamics 44(11-12), 3237-3260. https://doi.org/10.1007/s00382-014-2418-8
  22. Meenal, R., and A. I. Selvakumar, 2018: Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renewable Energy 121, 324-343. https://doi.org/10.1016/j.renene.2017.12.005
  23. Mohammadi, K., S. Shamshirband, D. Petkovic, and H. Khorasanizadeh, 2016: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews 53, 1570-1579. https://doi.org/10.1016/j.rser.2015.09.028
  24. Mokhtari, A., H. Noory, and M. Vazifedoust, 2018: Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agricultural and forest meteorology 250, 159-170. https://doi.org/10.1016/j.agrformet.2017.12.250
  25. Mokhtari, A., H. Noory, and M. Vazifedoust, 2018: Performance of Different Surface Incoming Solar Radiation Models and Their Impacts on Reference Evapotranspiration. Water resources management 32(9), 3053-3070. https://doi.org/10.1007/s11269-018-1974-9
  26. Olatomiwa, L., S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petkovic, and C. Sudheer, 2015: A support vector machine-firefly algorithm-based model for global solar radiation prediction. Solar Energy 115, 632-644. https://doi.org/10.1016/j.solener.2015.03.015
  27. Premalatha, M., and C. Naveen, 2018: Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study. Renewable and Sustainable Energy Reviews 91, 248-258. https://doi.org/10.1016/j.rser.2018.03.096
  28. Premalatha, N., and A. Valan Arasu, 2016: Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of applied research and technology 14(3), 206-214. https://doi.org/10.1016/j.jart.2016.05.001
  29. Qazi, A., H. Fayaz, A. Wadi, R. G. Raj, N. Rahim, and W. A. Khan, 2015: The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. Journal of cleaner production 104, 1-12. https://doi.org/10.1016/j.jclepro.2015.04.041
  30. Renno, C., F. Petito, and A. Gatto, 2015: Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system. Energy Conversion and Management 106, 999-1012. https://doi.org/10.1016/j.enconman.2015.10.033
  31. Voyant, C., G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, and A. Fouilloy, 2017: Machine learning methods for solar radiation forecasting: A review. Renewable Energy 105, 569-582. https://doi.org/10.1016/j.renene.2016.12.095
  32. Walcek, C. J., 1994: Cloud cover and its relationship to relative humidity during a springtime midlatitude cyclone. Monthly weather review 122(6), 1021-1035. https://doi.org/10.1175/1520-0493(1994)122<1021:CCAIRT>2.0.CO;2
  33. Wang, L., O. Kisi, M. Zounemat‐Kermani, Z. Zhu, W. Gong, Z. Niu, H. Liu, and Z. Liu, 2017: Prediction of solar radiation in China using different adaptive neuro-fuzzy methods and M5 model tree. International Journal of Climatology 37(3), 1141-1155. https://doi.org/10.1002/joc.4762
  34. Yadav, A. K., H. Malik, and S. Chandel, 2015: Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India. Renewable and Sustainable Energy Reviews 52, 1093-1106. https://doi.org/10.1016/j.rser.2015.07.156