• Title/Summary/Keyword: Observation Features

Search Result 547, Processing Time 0.029 seconds

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

A Study on Occurrence Frequency of Cloud for Altitude in the Central Region of the Korean Peninsula using Upper-Air Observation Data (고층기상관측자료를 이용한 한반도 중부지방의 고도별 구름 발생빈도 연구)

  • Kim, In Yong;Park, Hyeryeong;Kim, Min Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.716-723
    • /
    • 2019
  • It is crucial to understand the characteristics of cloud occurrence frequency for development of high precision guided missile using infrared imaging sensor. In this paper, we investigated the vertical structure of cloud for altitude using upper-air observation data. We find that cloud occurrence frequency is high at altitudes of 1.3 km and 9.5 km. Theses features have seasonal and temporal dependency. In the summer, cloud often occur more than average regardless of altitude. In the winter, low clouds occur frequently, and high clouds do not occur well. In temporal characteristics, clouds occur more frequently in daytime than in nighttime regardless of altitude. Many of clouds exist in single layer or double layers in the air. We also find that the 40 % of cloud occurrence frequency at high altitude when low clouds under altitude of 2 km cover entire sky.

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.

Assessment of New High-resolution Regional Climatology in the East/Japan Sea

  • Lee, Jae-Ho;Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2021
  • This study provides comprehensive assessment results for the most recent high-resolution regional climatology in the East/Japan Sea by comparing with the various existing climatologies. This new high-resolution climatology is generated based on the Optimal Interpolation (OI) method with individual profiles from the World Ocean Database and gridded World Ocean Atlas provided by the National Centers for Environmental Information (NCEI). It was generated from the recent previous study which had a primary focus to solve the abnormal horizontal gradient problem appearing in the other high-resolution climatology version of NCEI. This study showed that this new OI field simulates well the meso-scale features including closed-curve temperature spatial distribution associated with eddy formation. Quantitative spatial variability was compared to the other four different climatologies and significant variability at 160 km was presented through a wavelet spectrum analysis. In addition, the general improvement of the new OI field except for warm bias in the coastal area was confirmed from the comparison with serial observation data provided by the National Fisheries Research and Development Institute's Korean Oceanic Data Center.

Method for Extracting Features of Conscious Eye Moving for Exploring Space Information (공간정보 탐색을 위한 의식적 시선 이동특성 추출 방법)

  • Kim, Jong-Ha;Jung, Jae-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • This study has estimated the traits of conscious eye moving with the objects of the halls of subway stations. For that estimation, the observation data from eye-tracking were matched with the experiment images, while an independent program was produced and utilized for the analysis of the eye moving in the selected sections, which could provide the ground for clarifying the traits of space-users' eye moving. The outcomes can be defines as the followings. First, The application of the independently produced program provides the method for coding the great amount of observation data, which cut down a lot of analysis time for finding out the traits of conscious eye moving. Accordingly, the inclusion of eye's intentionality in the method for extracting the characteristics of eye moving enabled the features of entrance and exit of particular objects with the course of observing time to be organized. Second, The examination of eye moving at each area surrounding the object factors showed that [out]${\rightarrow}$[in], which the line of sight is from the surround area to the objects, characteristically moved from the left-top (Area I) of the selected object to the object while [in]${\rightarrow}$[out], which is from the inside of the object to the outside, also moved to the left-top (Area I). Overall, there were much eye moving from the tops of right and left (Area I, II) to the object, but the eye moving to the outside was found to move to the left-top (Area I), the right-middle (Area IV) and the right-top (Area II). Third, In order to find if there was any intense eye-moving toward a particular factor, the dominant standards were presented for analysis, which showed that there was much eye-moving from the tops (Area I, II) to the sections of 1 and 2. While the eye-moving of [in] was [I $I{\rightarrow}A$](23.0%), [$I{\rightarrow}B$](16.1%) and [$II{\rightarrow}B$](13.8%), that of [out] was [$A{\rightarrow}I$](14.8%), [$B{\rightarrow}I$](13.6%), [$A{\rightarrow}II$](11.4%), [$B{\rightarrow}IV$](11.4%) and [$B{\rightarrow}II$](10.2%). Though the eye-moving toward objects took place in specific directions (areas), that (out) from the objects to the outside was found to be dispersed widely to different areas.

A Study of Line-shaped Echo Detection Method using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.360-365
    • /
    • 2014
  • There are many types of advanced devices for weather prediction process such as weather radar, satellite, radiosonde, and other weather observation devices. Among them, the weather radar is an essential device for weather forecasting because the radar has many advantages like wide observation area, high spatial and time resolution, and so on. In order to analyze the weather radar observation result, we should know the inside structure and data. Some non-precipitation echoes exist inside of the observed radar data. And these echoes affect decreased accuracy of weather forecasting. Therefore, this paper suggests a method that could remove line-shaped non-precipitation echo from raw radar data. The line-shaped echoes are distinguished from the raw radar data and extracted their own features. These extracted data pairs are used as learning data for naive bayesian classifier. After the learning process, the constructed naive bayesian classifier is applied to real case that includes not only line-shaped echo but also other precipitation echoes. From the experiments, we confirm that the conclusion that suggested naive bayesian classifier could distinguish line-shaped echo effectively.

An A2CL Algorithm based on Information Optimization Strategy for MMRS

  • Dong, Qianhui;Li, Yibing;Sun, Qian;Tian, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1603-1623
    • /
    • 2020
  • Multiple Mobile Robots System (MMRS) has shown many attractive features in lots of real-world applications that motivate their rapid and wide diffusion. In MMRS, the Cooperative Localization (CL) is the basis and premise of its high-performance task. However, the statistical characteristics of the system noise should be already known in traditional CL algorithms, which is difficult to satisfy in actual MMRS because of the numerous of disturbances form the complex external environment. So the CL accuracy will be reduced. To solve this problem, an improved Adaptive Active Cooperative Localization (A2CL) algorithm based on information optimization strategy for MMRS is proposed in this manuscript. In this manuscript, an adaptive information fusion algorithm based on the variance component estimation under Extended Kalman filter (VCEKF) method for MMRS is introduced firstly to enhance the robustness and accuracy of information fusion by estimating the covariance matrix of the system noise or observation noise in real time. Besides, to decrease the effect of observation uncertainty on CL accuracy further, an observation optimization strategy based on information theory, the Model Predictive Control (MPC) strategy, is used here to maximize the information amount from observations. And semi-physical simulation experiments were carried out to verity the A2CL algorithm's performance finally. Results proved that the presented A2CL algorithm based on information optimization strategy for MMRS cannot only enhance the CL accuracy effectively but also have good robustness.

Context-dependency of Students' Conceptions in Optics: Focused on Vision & Mirror Image (광학분야에서 학생 개념의 상황 의존성: 시각과 거울상을 중심으로)

  • Kwon, Gyeong-Pil;Bang, So-Yoon;Lee, Sung-Muk;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.3
    • /
    • pp.406-414
    • /
    • 2006
  • This study investigated 7th grade students' context dependency on explanations about propagating path of light in three different contextual problems: observation of an object, observation of an object's image in a mirror, and observation of one's own face reflection in a mirror. Researchers examined student response in each context through interviews. The students were classified into four groups according to their explanations for the three different contexts. Each group was redivided into two or three subgroups in accordance with their conceptual features. After that, researchers investigated the characteristics of each subgroup. Main findings of the study indicated that (1) group 1 students' conceptions differed in each context; (2) group 2 students showed scientific conceptions in C1 context but in C2 context they showed visual ray conceptions or image misconceptions; (3) group 3 students did not show scientific conceptions in C3 context by strong misconceptions about one's own face reflection in the mirror. Also, this paper discussed the educational implications of the results.

Clinical Analysis of Foreign Bodies in Gastrointestinal Tract in Children (소아에서 위장관내 이물질의 임상적 고찰)

  • Choi, Eunsoo;Lee, Hyo Gyun;Choi, Soo Jin Na;Chung, Sang Young
    • Advances in pediatric surgery
    • /
    • v.20 no.1
    • /
    • pp.12-16
    • /
    • 2014
  • Foreign body ingestion is a common problem among paediatric populations. Most of the ingested foreign bodies spontaneously pass through the gastrointestinal tract, but approximately less then 10% of them remain without being discharged, and trigger complications. Therefore, proper evaluation and treatment according to the situation is required. In this study, clinical progress and complications were analyzed according to the clinical features and treatment in children who ingested foreign bodies. Among pediatric patients under 18 who were admitted to Chonnam National University Hospital after ingesting foreign bodies between January 2008 to June 2012, only the patients who had their foreign body in the gastrointestinal tract were included in this study. Based on medical records, age, type of foreign body, time spent till admission, and whether the endoscopy was done or not, complication were researched retrospectively. According to symptoms and plain abdomen X-ray findings, treatment was chosen and conducted among endoscopy, observation and emergency operation. Among 273 patients, 9 (3.3%) of them had surgical removal. Seven (2.6%) of them had an emergency operation on the day of admission, and the rest 2 (0.7%) had operation during observation. Removal through initial endoscopic approach was tried in 157 (57.5%) patients. Eleven (70.8%) of them had their foreign body removed at the initial trial, and 5 (4.9%) of them at the second trial. Among 109, who were on observation status, 9 (8.3%) of them needed endoscopic removal, and 2 (1.8%) of them suffered from surgical removal. It is thought to be better to approach slowly considering the type, size and symptoms in foreign body ingestion of pediatric patients, rather than immediate and invasive removal.

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.