DOI QR코드

DOI QR Code

Assessment of New High-resolution Regional Climatology in the East/Japan Sea

  • Lee, Jae-Ho (Department of Earth Science Education, Kongju National University) ;
  • Chang, You-Soon (Department of Earth Science Education, Kongju National University)
  • Received : 2021.07.30
  • Accepted : 2021.08.23
  • Published : 2021.08.31

Abstract

This study provides comprehensive assessment results for the most recent high-resolution regional climatology in the East/Japan Sea by comparing with the various existing climatologies. This new high-resolution climatology is generated based on the Optimal Interpolation (OI) method with individual profiles from the World Ocean Database and gridded World Ocean Atlas provided by the National Centers for Environmental Information (NCEI). It was generated from the recent previous study which had a primary focus to solve the abnormal horizontal gradient problem appearing in the other high-resolution climatology version of NCEI. This study showed that this new OI field simulates well the meso-scale features including closed-curve temperature spatial distribution associated with eddy formation. Quantitative spatial variability was compared to the other four different climatologies and significant variability at 160 km was presented through a wavelet spectrum analysis. In addition, the general improvement of the new OI field except for warm bias in the coastal area was confirmed from the comparison with serial observation data provided by the National Fisheries Research and Development Institute's Korean Oceanic Data Center.

Keywords

Acknowledgement

We appreciate anonymous reviewers for helpful comments of this paper. This research was supported by the National Research Foundation of Korea (2019R1A2C1008490) and Chungcheong Sea Grant Program founded by Korean Ministry of Oceans and Fisheries.

References

  1. Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D., Smolyar, I. V., 2018, World Ocean Atlas 2018. [indicate subset used]. NOAA National Centers for Environmental Information.
  2. Boyer, T. P., Levitus, S., 1994, Quality Control and Processing of Historical Temperature, Salinity and Oxygen Data. NOAA Technical Report No. 81, National Oceanographic Data Center, 65.
  3. Carnes, M. R., 2009, Description and evaluation of GDEM-V 3.0. Naval Research Lab, memorandum 7330-09-9165, 21 p.
  4. Carnes, M. R., Helber, W. R., Barron, C. N., and Dastugue, J. M., 2010, Validation test report for GDEM4. Naval Research Lab, A343035, 66 p.
  5. Chang, Y.-S., Rosati, A. J., Zhang, S., and Harrison, M. J., 2009, Objective analysis of monthly temperature and salinity for the world ocean in the 21st century: Comparison with World Ocean Atlas and application to assimilation validation, J. Geophys. RES., 114, C02014, doi: 10.1029/2008JC004970.
  6. Chang, Y.-S., and Shin, H.-R., 2012, Objective analysis of monthly temperature and salinity around the southwestern East Sea (Japan Sea) on a 0.1° grid, Cont. Shelf Res., 45, 54-64, doi:10.1016/j.csr.2012.06.001.
  7. Chang, Y.-S., and Shin, H.-R., 2014, Vertical Gradient Correction for the Oceanographic Atlas of the East Asian Seas. J. Geophys. Res. Oceans 119, 5546-5554, doi:10.1002/2014JC009845.
  8. Fukumori, I., Wunsch, C., 1991, Efficient representation of the North Atlantic hydrographic and chemical distributions, Progress in Oceanography, 27, 111-195, doi: 10.1016/0079-6611(91)90015-E.
  9. Gouretski, V., 2018, World ocean circulation experimentArgo global hydrographic climatology, Ocean Sci. 14, 1127-1146, doi:10.5194/os-14-1127-2018.
  10. Gouretski, V., 2019, A new global hydrographic climatology, Atmospheric and Oceanic Science Letters, doi:10.1080/16742834.2019.1588066.
  11. Hosoda, S., Ohira, T., Nakamura, T., 2008. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. vol. 8, 47-59. https://doi.org/10.5918/jamstecr.8.47
  12. Lee, J.-H., and Chang, Y.-S., 2021, Development of high-resolution regional climatology in the East/Japan Sea with a primary focus on meridional temperature gradient correction, Front. Earth Sci. 9:680881, doi:10.3389/feart.2021.680661.
  13. Levitus, S., 1982, Climatological Atlas of the World Ocean, US. Government Printing Office, NOAA professional paper 13, 190 p.
  14. Levitus, S. (Ed), 2002, World Ocean Atlas 2001, vol. 1-6, NOAA Atlas NESDIS, vol. 49-54, NOAA, Silver Spring, MD.
  15. Levitus, S. (Ed), 2006, World Ocean Atlas 2005, vol. 1-4, NOAA Atlas NESDIS, vol. 61-64, NOAA, Silver Spring, MD.
  16. Levitus, S. (Ed), 2009, World Ocean Atlas 2009, vol. 1-4, NOAA Atlas NESDIS, vol. 68-71, NOAA, Silver Spring, MD.
  17. Levitus, S. (Ed), 2013, World Ocean Atlas 2013, vol. 1-4, NOAA Atlas NESDIS, vol. 73-76, NOAA, Silver Spring, MD.
  18. McIntosh, P., 1990, Oceanographic data interpolation: Objective analysis and splines. Journal of Geophysical Research 95, 13529-13541, doi: 10.1029/JC095iC08p13529.
  19. NOAA, 1994, World Ocean Atlas 1994, vol. 1-5, NOAA Atlas NESDIS, vol. 1-5, NOAA, Silver Spring, MD.
  20. NOAA, 1998, World Ocean Atlas 1998, vol. 1-12, NOAA Atlas NESDIS, vol. 27-38, NOAA, Silver Spring, MD.
  21. Roemmich, D., Gilson, J., 2009. The 2004-2008 mean and annual cycle of temperature, salinity and steric height in the global ocean from Argo Program. Prog. Oceanogr. 82, 81-100, http://dx.doi.org/10.1016/j.pocean.2009.03.004.
  22. Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, J. M. Murphy, 2007, Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model, Science, 317(5839): 796-799. https://doi.org/10.1126/science.1139540
  23. Teague, W. J., Carron, M. J., and Hogan, P. J., 1990, A comparison between the generalized digital environmental model and levitus climatologies. Journal of Geophysical Research, 95, 7167-7183. https://doi.org/10.1029/JC095iC05p07167