• Title/Summary/Keyword: Object trajectory

Search Result 272, Processing Time 0.029 seconds

Design and Implementation of Index Structure for Tracing of RFID Tag Objects (RFID 태그 객체의 위치 추적을 위한 색인 구조의 설계 및 구현)

  • Kim, Dong-Hyun;Lee, Gi-Hyoung;Hong, Bong-Hee;Ban, Chae-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.2 s.14
    • /
    • pp.67-79
    • /
    • 2005
  • For tracing tag locations, the trajectories should be modeled and indexed in a radio frequency identification (RFID) system. The trajectory of a tag is represented as a line that connects two spatiotemporal locations captured when the tag enters and leaves the vicinity of a reader. If a tag enters but does not leave a reader, its trajectory is represented only as a point captured at entry. Because the information that a tag stays in a reader is missing from the trajectory represented only as a point, it is impossible to find the tag that remains in a reader. To solve this problem we propose the data model in which trajectories are defined as intervals and new index scheme called the Interval R-tree. We also propose new insert and split algorithms to enable efficient query processing. We evaluate the performance of the proposed index scheme and compare it with the R-tree and the R*-tree. Our experiments show that the new index scheme outperforms the other two in processing queries of tags on various datasets.

  • PDF

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

A Data Mining Tool for Massive Trajectory Data (대규모 궤적 데이타를 위한 데이타 마이닝 툴)

  • Lee, Jae-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Trajectory data are ubiquitous in the real world. Recent progress on satellite, sensor, RFID, video, and wireless technologies has made it possible to systematically track object movements and collect huge amounts of trajectory data. Accordingly, there is an ever-increasing interest in performing data analysis over trajectory data. In this paper, we develop a data mining tool for massive trajectory data. This mining tool supports three operations, clustering, classification, and outlier detection, which are the most widely used ones. Trajectory clustering discovers common movement patterns, trajectory classification predicts the class labels of moving objects based on their trajectories, and trajectory outlier detection finds trajectories that are grossly different from or inconsistent with the remaining set of trajectories. The primary advantage of the mining tool is to take advantage of the information of partial trajectories in the process of data mining. The effectiveness of the mining tool is shown using various real trajectory data sets. We believe that we have provided practical software for trajectory data mining which can be used in many real applications.

In-Situ based Trajectory Editing Method of a 3D Object for Digilog Book Authoring (디지로그 북 저작을 위한 3D 객체의 In-Situ 기반의 이동 궤적 편집 기법)

  • Ha, Tae-Jin;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2010
  • A Digilog Book is an augmented reality (AR) based next generation publication supporting both sentimental analog emotions and digitized multi-sensory feedbacks by combining a conventional printed book and digital contents. As a Digilog Book authoring software, ARtalet provides an intuitive authoring environment through 3D user interface in AR environment. In this paper, we suggest ARtalet authoring environment based trajectory editing method to generate and manipulate a movement path of an augmented 3D object on the Digilog Book. Specifically, the translation points of the 3D manipulation prop is examined to determine that the point is a proper control point of a trajectory. Then the interpolation using splines is conducted to reconstruct the trajectory with smoothed form. The dynamic score based selection method is also exploited to effectively select small and dense control points of the trajectory. In an experimental evaluation our method took the same time and generated a similar amount of errors as the usual approach, but reduced the number of control points needed by over 90%. The reduced number of control points can properly reconstruct a movement path and drastically decrease the number of control point selections required for movement path modification. For control manipulation, the task completion time was reduced and there was less hand movement needed than with conventional method. Our method can be applicable to drawing or curve editing method in immersive In-Situ AR based education, game, design, animation, simulation application domains.

  • PDF

Vehicle Stop and Go Cruise Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차량 정지/서행 순항 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.206-213
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method for application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary vehicle stop and go cruise control systems which makes the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

The Target Searching Method in the Chaotic Mobile Robot Embedding BVP Model (BVP 모델을 내장한 카오스 로봇에서의 목표물 탐색)

  • Bae, Young-Chul;Kim, Yi-Gon;Koo, Young-Duk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.259-264
    • /
    • 2007
  • In this paper, we composed chaos mobile robot by embedding many type of chaos circuit including Arnold Equation and Chua's Equation and proposed method of evaluation of obstacles when it meets or approaches an obstacle while the mobile robot searches an any plane with chaos trajectory and method of concentrating search when it faces target and verified these results. For obstacles avoidance, we developed algorithm that evades an obstacles with chaos trajectory by assuming fixed obstacle, obstacles using VDP model, hidden obstacles using BVP model as obstacles and for searching an object, we developed algorithm of searching with a chaos trajectory by assuming BVP model as an object, verified the results and confirmed reasonability of them.

Abnormal Traffic Behavior Detection by User-Define Trajectory (사용자 지정 경로를 이용한 비정상 교통 행위 탐지)

  • Yoo, Haan-Ju;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • This paper present a method for abnormal traffic behavior, or trajectory, detection in static traffic surveillance camera with user-defined trajectories. The method computes the abnormality of moving object with a trajectory of the object and user-defined trajectories. Because of using user-define based information, the presented method have more accurate and faster performance than models need a learning about normal behaviors. The method also have adaptation process of assigned rule, so it can handle scene variation for more robust performance. The experimental results show that our method can detect abnormal traffic behaviors in various situation.

Minimum-Time Algorithm for Intercepting an Object by the Robot on Conveyor System (컨베이어 상의 물체 획득을 위한 로봇의 최소시간 알고리즘)

  • Shin, Ik-Sang;Moon, Seung-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.795-801
    • /
    • 2005
  • This paper focuses on planning strategies for object interception by the robotic manipulator on a conveyor system in minimum time. The goal is that the robot is able to intercept object with minimum time on a conveyor line that moves at a given speed. The search algorithm for minimum time solution is given in detail for all possible cases for initial locations of robot. Simulations results show the validity of the given algorithm.