In progressive image coding, if object region that have main contents in image are transmitted prior to the remained region, this method will be very useful. In this paper, the progressive image coding based on SPIHT using object region transmission method by priority is proposed. First, an original image is transformed by wavelet. Median filtering is used about wavelet transformed coefficient region for extracting object region. This extracted object region encoded by SPIHT. Then encoded object region are transmitted in advance of the remained region. This method is good to a conventional progressive image coding about entire original image. Experimental results show that the proposed method can be very effectively used for image coding applications such as internet retrieval and database searching system.
In modern society, creation and distribution of multimedia contents is being actively conducted. These multimedia information have come out the enormous amount daily, the amount of data is also large enough it can't be compared with past text information. Since it has been increased for a need of the method to efficiently store multimedia information and to easily search the information, various methods associated therewith have been actively studied. In particular, image search methods for finding what you want from the video database or multiple sequential images, have attracted attention as a new field of image processing. Image retrieval method to be implemented in this paper, utilizes the attribute of corner patches based on the corner points of the object, for providing a new method of efficient and robust image search. After detecting the edge of the object within the image, the straight lines using a Hough transformation is extracted. A corner patches is formed by defining the extracted intersection of the straight line as a corner point. After configuring the feature vectors with patches rearranged, the similarity between images in the database is measured. Finally, for an accurate comparison between the proposed algorithm and existing algorithms, the recall precision rate, which has been widely used in content-based image retrieval was used to measure the performance evaluation. For the image used in the experiment, it was confirmed that the image is detected more accurately in the proposed method than the conventional image retrieval methods.
본 논문에서는 특이 칼라 분포에 대한 정보를 활용함으로써 어떠한 사전 지식없이 칼라 영상으로부터 중심 객체를 추출하는 방법에 대해 제안한다. 중심 객체는 영상 중심 부근에 위치하면서 특이 칼라 분포를 갖는 영역들의 집합으로 정의한다. 특이 칼라는 영상 경계 주변에 비해 영상의 중심 위치에서 보다 높은 밀도로 존재하는 칼라로 정의한다. 중심 객체 추출을 위해 우선 특이 칼라 정보를 사용하여 영상 분할된 영역 중에서 객체의 특징을 대표하는 영역들의 집합을 핵심객체영역을 선택한다. 핵심객체영역에 인접하며 이와 높은 칼라 유사도를 갖고 또한 배경이 아닌 영역들을 반복적으로 핵심객체영역에 병합하여 핵심객체영역을 확장함으로써 생성된 최종 병합 결과를 중심 객체로 추출한다. 따라서 중심 객체는 상이한 칼라 특징을 갖는 영역으로 구성될 수 있으며 상호 연결되어 있을 경우에는 두개 이상의 객체가 중심 객체에 포함될 수 있다. 제안된 방법의 타당성 및 중요 칼라의 유용성은 다양한 실험 영상을 통해 확인하였다. 본 논문에서 제안된 방법으로 추출된 중심 객체는 영상 검색 응용 분야에 유용하게 사용될 수 있을 것으로 기대한다.
최근 스마트 기기의 발전으로 인터넷상에 존재하는 이미지 데이터의 양이 급속하게 증가하는 상황에서 효과적인 이미지 검색을 위한 다양한 방법들이 연구되고 있다. 기존의 이미지 검색 방법들은 이미지에 존재하는 물체들을 단순하게 검출하여 각 물체들의 라벨 정보에 근거한 검색을 수행하기 때문에 사용자가 원하는 이미지와 검색 결과로 얻은 이미지 간에 의미적 차이인 시맨틱 갭(Semantic Gap)이 발생된다. 이미지 검색에서 발생하는 시맨틱 갭을 줄이기 위해, 본 논문에서는 딥러닝 기반의 다중 객체 분류 모듈과 사람의 행위를 분류하는 모듈을 연결하고, 이 모듈들에 행위 온톨로지를 결합하였다. 즉, 딥러닝과 행위 온톨로지의 결합을 기반으로 객체들 간의 연관성을 고려한 이미지 검색 시스템을 제안한다. 이미지에 포함된 동적인 행위를 고려하기 위해 Walking과 Running 데이터를 이용하여 실험한 결과를 분석하였다. 제안한 방법은 향후 이미지 검색 결과의 정확도를 높일 수 있는 영상의 자동 주석 생성 연구에 확장하여 적용할 수 있다.
본 논문은 컬러 질의 영상의 효과적인 검출을 위해 공간 컬러모델 및 특징점 정합 방법을 이용한 객체 기반 영상 검색 방법을 제안한다. 제안하는 방법은 선행 연구 되었던 컬러 히스토그램 방법의 단점을 극복하고, 데이터베이스 영상과 질의 영상의 컬러 유사도를 사용자 조작 없이 실시간 분할 검출한다. 이를 위해 HMMD 모델과 러프 집합 이론을 이용하였다. 여기서 질의 영상의 검출을 위해 질의 영상과 데이터베이스 영상 간의 색상 유사도를 비교하여 관심 영역을 선택하고, 관심 영역에서 SIFT 정합 방법을 이용하여 검색한다. 실험 결과, 본 논문에서 제안하는 방법이 기존 방법보다 우수한 검출율을 보임을 확인하였다.
본 최근 영상 및 멀티미디어의 시각적인 내용을 기반으로 하는 검색 방법에 관한 많은 연구들이 진행되고 있다. 내용 기반 영상 검색(content-based image retrieval)에 관한 대부분의 기존의 질의 방법은 입력 영상에 의한 질의 또는 컬러(color), 형태(shape), 특징(texture) 등과 같은 low-level 특징을 사용한다. 그러나 이러한 방법들은 비교적 사용하기 불편하고 방법이 편중되어 있어서 일반 사용자들의 다양한 질의 요구에 적합하지 못하다. 본 논문에서 제안하는 것은 내용 기반 영상 검색 시스템 하의 컬러 객체의 자동 추출과 다중 질의를 위한 레이블링 알고리즘이다. 이것은 먼저 single colorizing 알고리즘을 사용하여 영상의 영역을 단순화 시키고 제안하는 Color and Spatial based Binary tree map (CSB tree map)을 이용하여 컬러 객체를 추출한다. 그리고 제안하는 레이블링 알고리즘을 이용하여 데이터베이스의 객체들을 색인한다. 이것은 컬러와 공간 정보를 고속으로 레이블링 하고 객체의 컬러 속성과 크기 및 위치 정보를 이용하여 객체의 컬러 기반과 공간적 기반의 조합을 바탕으로 하는 사용자의 다양한 질의에 부합할 수 있는 적응성 있는 시스템을 구현한다. 본 논문에서는 "Washington" 데이터베이스를 이용한 비교 실험을 통해서 제안하는 시스템의 검색 결과의 우수함을 알 수 있었다.
본 논문에서는 사용자가 질의를 원하는 물체 영역을 선택하면 유사 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상은 색상성분과 그레이성분으로 나누어져 웨블릿 변환되고 색상성분에서는 컬러 오토코릴로그램과 분산으로 색상특성을 추출한다. 그리고 그레이성분에서는 오토코릴로그램과 GLCM을 통해 질감특성을 추출한다. 이렇게 구한 2개 성분에서의 특성들을 이용하여 데이터베이스내의 영상들과 각각 유사도를 비교하여 검색하게 된다. 이때 각 유사도에 가중치를 적용하였다. 한 가지 성분보다 두 가지 성분에서 특성을 구하여 각각의 단점을 보완하였고 실험 결과에서도 소환성(recall) 및 정확성(precision)이 향상됨을 볼 수 있었다 또한 가중치를 적용함으로써 검색 효율이 개선되었다. 그리고 데이터베이스내 영상들의 여러 특성을 특성 라이브러리내에 자동 색인화 시킴으로써 고속의 영상 검색이 가능하였다.
이 논문의 주요 목적은 내용을 기반으로 하는 이미지 검색에서 이미지 객체의 외형특징을 추출하는 방법을 제시하는 것이다. 대부분의 실질적인 객체들의 외형은 불규칙적이고, 이러한 객체를 수치화하기위한 일반적인 방법은 없다. 특히 전자 카타로그들은 상품들을 나타내는 많은 이미지를 포함하고 있다. 이 논문에서는 이미지 전체가 아닌 이미지내의 개별 객체들을 기반으로 특징을 추출하는 방법을 제시한다. 왜냐하면 제시된 방법은 한 이미지내에서 RLC lines을 사용하여 각 객체들의 외형을 기반으로하는 방법을 사용하기 때문이다. 실험결과는 일반적으로 가장 많이 사용하는 특징인 Texture와 비교를 했고 제시된 외형을 나타내는 변수들이 전자카타로그의 이미지 객체들을 뚜렷하게 나타냈고, 보다 정확하게 객체들을 분류하고 구별하였다.
본 논문에서는 해마와 피질 사이의 상호 작용을 이용하여 사용자 친화적인 객체 기반 영상 검색 시스템을 제안한다. 내용기반 영상 검색 시스템은 대부분 예제(example) 질의 혹은 스케치 질의 등을 이용하고 있고 이러한 방법들은 비교적 사용하기 불편하고 방법이 편중되어 있어서 일반 사용자들의 다양한 질의 요구에 적합하지 못하다. 제안하는 알고리즘은 CSB 트리맵 (Color and Spatial based Binary tree map)을 이용하여 객체를 추출하고 지역 라벨링 알고리즘을 이용하여 객체의 색상의 상관관계, 객체의 크기와 위치 정보를 비트 스트림 형태로 변환하고 이것을 해마와 피질 사이의 상호 작용의 관계를 이용한 해마 신경망을 사용하여 학습시킨다. 사람의 뇌 속에서 어떤 패턴을 인식을 하는 경우 해당 패턴의 특이한 특징에 대해 흥분하는 세포들이 특정 신호를 발생시킨다. 이것은 흥분학습에 의해 단기기억에서 장기기억으로 저장하는 해마의 기능으로 기존의 신경망에서는 입력되는 패턴의 특성과는 상관없이 특징 개수가 모두 동일하게 비교된다. 제안하는 해마 신경망은 호감도 조정에 의해서 입력되는 영상 패턴의 특징들을 흥분학습과 억제학습을 이용하여 불필요한 특징은 억제시키고 중요한 특징은 장기 기억 시켜서 적응성 있는 고속 검색 시스템을 구현한다.
본 논문은 불확실한 객체의 영상 정보를 객체의 에지 특징정보를 이용하여 내용기반검색기법으로 CBIRS/EFI을 제안했다. 특히 객체의 부분 영상 정보의 경우 효율적으로 검색하기 위해 객체의 특징 정보 중 윤곽선 정보와 색체정보 추출하여 검색기법이다. 이를 실험하기 위해 지하 주차장의 차량 이미지를 캡처한후 객체의 특징 정보를 위한 차량의 측면 에지 특징 정보를 추출하였다. 검색하고자하는 원 영상과 특징 추출한 영상을 분석 결과와 최종 유사도 측정 결과에 의해 내용기반 검색을 적용하는 시스템으로, 기존 특징 추출 내용 기반 영상 검색 시스템인 FE-CBIRS 시스템에 비해 검색율의 정확성과 효율성을 향상 시키는 기능이 보완되었다. CBIRS/EF시스템의 성능평가는 차량의 색상 정보와 차량의 에지 추출 특징 정보를 적용하여 영역 특징정보를 검색하는 과정에서 색상 특징 검색 시간, 모양 특징 검색 시간과 검색 율을 비교 했다. 차량 에지 특징 추출률의 경우 91.84% 추출하였고, 차량 색상 검색 시간, 모양 특징 검색시간, 유사도 검색시간에서 CBIRS/EFI가 FE-CBIRS 보다 평균 검색시간이 평균 0.4~0.9초의 차이를 보고 있어 우수한 것으로 증명되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.