• Title/Summary/Keyword: ORF6

Search Result 221, Processing Time 0.022 seconds

Evolution of a dextransucrase gene for constitutive and hyper-production and for synthesis of new structure dextran

  • Gang, Hui-Gyeong;Kim, Do-Man;Jang, Seok-Sang
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.545-549
    • /
    • 2003
  • After irradiation of a cloned dextransucrase gene (dsrB742) with ultrasoft X-ray, an E. coli transformant (pDSRB742CK) was first developed for the expression of an extracellular dextransucrase, having increased activity and the synthesis of a highly branched dextran. Seven nucleotides of the parent gene (dsrB742) were changed in the nucleotide sequences of dsrB742ck. Among them, four nucleotides were changed at the ORF of dsrB742, resulting in a 30 amino acids deletion in the N-terminal of DSRB742 dextransucrase. The activity of DSRB742CK dextransucrase in culture supernatant was approximately 2.6 times higher (0.035 IU/ml) than that of the DSRB742 clone. The pDSRB742CK clone produced DSRB742CK dextransucrase when grown both on a sucrose medium (inducibly) and on a glucose medium (constitutively). The DSRB742 clone did not produce dextran constitutively on a glucose medium. DSRB742CK dextran had 15.6% branching and 2.7-times higher resistance to dextranase hydrolysis compared to DSRB742 dextran. $^{13}C-NMR$ showed that DSRB742CK dextran contained ${\alpha}-(1{\rightarrow}3)$ branch linkages that were not present in DSRB742 dextran.

  • PDF

Cloning, Sequencing, and Characterization of Enterotoxin Pathogenicity Islet from Bacteroides fragilis 419

  • Rhie, Gi-Eun;Chung, Gyung-Tae;Lee, Yong-Jin;Sung, Won-Keun;Oh, Hee-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.86-90
    • /
    • 2000
  • We have earlier reported on the cloning and identification of bft-k from an enterotoxigenic strain of Bacteroides fragilis 419, which was isolated from the blood of a Korean patient who suffered from systemic infections [4,5]. The bft-k gene encodes a 397-amino-acids metalloprotease enterotoxin, and the protein has been identified as a new isoform of B. fragilis enterotoxins (BFTs), which are cytopathic to intestinal epithelial cells to induce fluid secretion and tissue damage in ligated intestinal loops [4, 6, 18, 20]. This report describes the cloning and sequencing of the enterotoxin pahogenicity islet of B. fragilis 419 which contains the bft-k gene. the cloned enterotoxin pathogenicity islet was found to have 6,045 bp in length and to contain 120bp direct repeats near its end. In the pathogenicity islet, in addition to the BFR-K, two putative open reading frames (ORFs) were identified; (1) the t-3 gene encoding a 396-amino-acids protein of a putative metalloprotease; (2) the third gene encoding an ORF of a 59-amino-acids protein, whose function has not yet beenn characterized. The expression of the t-3 gene in B. fragilis 419 was verified by western blot analysis.

  • PDF

Molecular Cloning and Nucleotide Sequence of Endo-Inulinase Gene from Xanthomonas oryzae #5

  • Kim, Byeong-U;Kim, Mi-Rang;Yu, Dong-Ju
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.655-659
    • /
    • 2000
  • A 11.5-kb DNA fragment containing an endo-inulinase gene was cloned from Xanthomonas oryzae #5. It contained a single open reading frame of 3,999bp, encoding a polypeptide composed of signal peptide of 32 amino acids and mature protein of 1,301 amino acids. From the comparison of amino acids sequences with fructan hydrolases, inulinase, levanase and CFTase, the sequence of the endo-inulinase had highly homology of 72% with CFTase of B. circulans, and six highly conserved regions including the ${\beta}-fructosidase$ motif were found.

  • PDF

A genome-wide association study (GWAS) for pH value in the meat of Berkshire pigs

  • Park, Jun;Lee, Sang-Min;Park, Ja-Yeon;Na, Chong-Sam
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.25-35
    • /
    • 2021
  • The purpose of this study is to estimate the single nucleotide polymorphism (SNP) effect for pH values affecting Berkshire meat quality. A total of 39,603 SNPs from 1,978 heads after quality control and 882 pH values were used estimate SNP effect by single step genomic best linear unbiased prediction (ssGBLUP) method. The average physical distance between adjacent SNP pairs was 61.7kbp and the number and proportion of SNPs whose minor allele frequency was below 10% were 9,573 and 24.2%, respectively. The average of observed heterozygosity and polymorphic information content was 0.32 ± 0.16 and 0.26 ± 0.11, respectively and the estimate for average linkage disequilibrium was 0.40. The heritability of pH45m and pH24h were 0.10 and 0.15 respectively. SNPs with an absolute value more than 4 standard deviations from the mean were selected as threshold markers, among the selected SNPs, protein-coding genes of pH45m and pH24h were detected in 6 and 4 SNPs, respectively. The distribution of coding genes were detected at pH45m and were detected at pH24h.

Isolation and Characterization of a cDNA Encoding Two Novel Heat-shock Factor OsHSF6 and OsHSF12 in Oryza Sativa L.

  • Liu, Jin-Ge;Yao, Quan-Hong;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Xu, Fang;Zhu, Hong
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.602-608
    • /
    • 2005
  • As a crucial transcription factor family, heat-shock factors were mainly analyzed and characterized in tomato and Arabidopsis. In this study, we isolated two putative heat shock factors OsHSF6 and OsHSF12 that interact specifically with heat-shock element (HSE) from Oryza sativa L by yeast one-hybrid method. The full-length cDNA of OsHSF6 and OsHSF12 have 1074bp and 920bp open reading frame (ORF), respectively. Analysis of the deduced amino acid sequences revealed that OsHSF6 was a class A heat shock factor (HSF) with all the conserved sequence elements characteristic of heat stress transcription factor, while OsHSF12 was a class B HSF with C-terminal domain (CTD) lacking of AHA motif. Bioinformatic analysis showed that the sequences and structures of two HSFs' DNA binding domain (DBD) had a high similarity with LpHSF24. The results of RT-PCR indicated OsHSF6 gene was expressed immediately after rice plants exposure to heat stress, and the transcription of OsHSF6 gene accumulated primarily in immature seeds, roots and leaves. However, we did not find the transcription of OsHSF12 gene in different organs and growth periods. Our results implied that OsHSF6 might be function as a HSF regulating early expression of stress genes in response to heat shock, and OsHSF12 might be act as a synergistic factor to regulate the expression of down-stream genes.

Cloning, Expression, and Biochemical Characterization of dTDP-Glucose 4,6-Dehydratase Gene (gerE) from Streptomyces sp. GERI-155

  • Lee, Hei-Chan;Sohng, Jae-Kyung;Kim, Hyung-Jun;Nam, Doo-Hyun;Seong, Chi-Nam;Han, Ji-Man;Yoo, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.576-583
    • /
    • 2004
  • GERI-155 is a macrolide antibiotic containing two deoxyhexose molecules and shows antimicrobial activities against Gram-positive bacteria. Deoxysugar biosynthetic gene cluster of GERI-155 from Streptomyces sp. GERI-l55 genome was cloned. Four orfs were identified and a putative orf presumed to be the dTDP g]ucose-4,6-dehydratase gene was designated as gerE. GerE was expressed in E. coli by using a recombinant expression vector pHJ1. The expressed protein was purified from E. coli cell lysate by using ammonium sulfate fractionation, and DEAE-sepharose CL-6B and hydroxylapatite column chromatography. The molecular mass of the expressed protein correlated with the predicted mass that was deduced from the cloned gene sequence data. The recombinant protein was a homodimer with a subunit relative molecular weight of 39,000 Dalton. It was found to have dTDP-glucose 4,6-dehydratase activity and also found to be highly specific for dTDP-glucose as a substrate. The values of $K_{m} and V_{max}$ for dTDP-g]ucose were $32\mu$M and 335 nmol $min^{-1}$ (mg protein)^{-1}$, respectively. dTTP and dTDP were strong inhibitors of the protein. $NAD^+$, the coenzyme for dTDP-glucose 4,6-dehydratase, was tightly bound to the expressed protein.

Identification and Cloning of jipA Encoding a Polypeptide That Interacts with a Homolog of Yeast Rad6, UVSJ in Aspergillus nidulans

  • Cho, Jae-Han;Yun, Seok-Soong;Jang, Young-Kug;Cha, Mee-Jeong;Kwon, Nak-Jung;Chae, Suhn-Kee
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • RAD6 in yeast mediates postreplication DNA repair and is responsible for DNA-damage induced mutations. RAD6 encodes ubiquitin-conjugating enzyme that is well conserved among eukaryotic organisms. However, the molecular targets and consequences of their ubiquitination by Rad6 have remained elusive. In Aspergillus nidulans, a RAD6 homolog has been isolated and shown to be an allele of uvs). We screened a CDNA library to isolate UVSJ-interacting proteins by the yeast two-hybrid system. JIPA was identified as an interactor of UVSJ. Their interaction was confirmed in vitro by a GST-pull down assay. JIPA was also able to interact with mutant UVSJ proteins, UVSJl and the active site cysteine mutant UVSJ-C88A. The N- and the C-terminal regions of UVSJ required for the interaction with UVSH, a RAD18 homolog of yeast which physically interacts with Rad6, were not necessary for the JIPA and UVSJ interactions. About 1.4 kb jipA transcript was detected in Northern analysis and its amount was not significantly increased in response to DNA-damaging agents. A genomic DNA clone of the jipA gene was isolated from a chromosome I specific genomic library by PCR-sib selection. Sequence determination of genomic and cDNA of jipA revealed an ORF of 893 bp interrupted by 2 introns, encoding a putative polypeptide of 262 amino acids. JIPA has 33% amino acid sequence identity to TIP41 of Saccharomyces cerevisiae which negatively regulates the TOR signaling pathway.

Mytilin B, an Antimicrobial Peptide from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus : Isolation, Purification, and Characterization (참담치(Mytilus coruscus) 혈구(hemocyte) 유래 항균 펩타이드 mytilin B의 정제 및 특성 분석)

  • Lee, Min Jeong;Oh, Ryunkyoung;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Joo-Won;Park, Jung Youn;Seo, Jung-Kil;Kim, Dong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1301-1315
    • /
    • 2018
  • We purified an antimicrobial peptide from the acidified hemocyte extract of Mytilus coruscus by $C_{18}$ reversed-phase high-performance liquid chromatography (RP-HPLC). The peptide was 4041.866 Da based on matrix-assisted laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS) and the 25 amino acids of the N-terminus sequence were identified. Comparison of this sequence of the purified peptide with the N-terminus sequences of other antimicrobial peptides revealed 100% identity with the mytilin B precursor of Mytilus coruscus. We also identified a 312 bp open-reading frame (ORF) encoding 103 amino acids based on the obtained amino acid residues. The nucleotide sequence of this ORF and the amino acid sequence also revealed 100% identity with the mytilin B precursor of Mytilus coruscus. We synthesized two antimicrobial peptides with an alanine residue in the C-terminus, and designated them mytilin B1 and B2. These two antimicrobial peptides showed antimicrobial activity against gram-positive bacteria, including Bacillus cereus and Streptococcus parauberis (minimal effective concentration, MECs $41.6-89.7{\mu}g/ml$), gram-negative bacteria, including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Pseudomonas aeruginosa, and Vibrio ichthyoenteri (MECs $7.4-39.5{\mu}g/ml$), and the fungus Candida albicans (MECs $26.0-31.8{\mu}g/ml$). This antimicrobial activity was stable under heat and salt conditions. Furthermore, the peptides did not exhibit significant hemolytic activity or cytotoxic effects. These results suggest that mytilin B could be applied as alternative antibiotic agent, and they add to the understanding of the innate immunity of hard-shelled mussels.

Apriona germari Larval Cuticle Protein Genes: Genomic Structure of Three Cuticle Protein Genes and cDNA Cloning of a Novel Cuticle Protein

  • Zheng Gui Zhong;Kim Bo-Yeon;Yoon Hyung-Joo;Wei Ya Dong;Xijie Guo;Jin Byung-Rae;Shon Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • In a previous study, three larval cuticle protein genes were cloned from the mulberry longicorn beetle, Apriona germari (Comp. Biochem. Physiol. B 136, 803-811, 2003). In the present study, the genomic structures of these three larval cuticle protein genes (AgLCP9.2, AgLCP12.6 and AgLCP12.3) were elucidated. All three cuticle protein genes consist of one intron and two exons. Southern blot analysis of genomic DNA suggested that three cuticle protein genes are a single copy gene. In addition, a novel larval cuticle protein gene, AgLCP10.6, was cloned from A. germari in this study. The AgLCP10.6 cDNA contains an ORF of 300 nucleotides that are capable of encoding a 100-amino acid polypeptide with a predicted molecular mass of 10.6 kDa. The amino acid sequence deduced from the AgLCP10.6 cDNA contained a type-specific consensus sequence identifiable in other insect cuticle proteins and is most homologous to Drosophila melanogaster cuticle protein ACP65A (51 % protein sequence identity). Northern blot analysis revealed that AgLCP10.6 showed epidermis-specific expression.

Genetically Engineered Biosynthesis of Macrolide Derivatives Including 4-Amino-4,6-Dideoxy-L-Glucose from Streptomyces venezuelae YJ003-OTBP3

  • Pageni, Binod Babu;Oh, Tae-Jin;Liou, Kwang-Kyoung;Yoon, Yeo-Joon;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • Two sugar biosynthetic cassette plasm ids were used to direct the biosynthesis of a deoxyaminosugar. The pOTBP1 plasmid containing TDP-glucose synthase (desIII), TDP-glucose-4,6-dehydratase (desIV), and glycosyltransferase (desVII/desVIII) was constructed and transformed into S. venezuelae YJ003, a strain in which the entire gene cluster of desosamine biosynthesis is deleted. The expression plasmid pOTBP3 containing 4-aminotransferase (gerB) and 3,5-epimerase (orf9) was transformed again into S. venezuelae YJ003-OTBP1 to obtain S. venezuelae YJ003-OTBP3 for the production of 4-amino-4,6-dideoxy-L-glucose derivatives. The crude extracts obtained from S. venezuelae ATCC 15439, S. venezuelae YJ003, and S. venezuelae YJ003-OTBP3 were further analyzed by TLC, bioassay, HPLC, ESI/MS, LC/MS, and MS/MS. The results of our study clearly shows that S. venezuelae YJ003-OTBP3 constructs other new hybrid macrolide derivatives including 4-amino-4,6-dideoxy-L-glycosylated YC-17 (3, [M+ $Na^+$] m/z=464.5), methymycin (4, m/z=480.5), novamethymycin (6, m/z=496.5), and pikromycin (5, m/z=536.5) from a 12-membered ring aglycon (10-deoxymethynolide, 1) and a 14-membered ring aglycon (narbonolide, 2). These results suggest a successful engineering of a deoxysugar pathway to generate novel hybrid macrolide derivatives, including deoxyaminosugar.