Genetically Engineered Biosynthesis of Macrolide Derivatives Including 4-Amino-4,6-Dideoxy-L-Glucose from Streptomyces venezuelae YJ003-OTBP3

  • Pageni, Binod Babu (Institute of Biomolecule Reconstruction(IBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction(IBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Liou, Kwang-Kyoung (Institute of Biomolecule Reconstruction(IBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Yoon, Yeo-Joon (Divison of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction(IBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Published : 2008.01.31

Abstract

Two sugar biosynthetic cassette plasm ids were used to direct the biosynthesis of a deoxyaminosugar. The pOTBP1 plasmid containing TDP-glucose synthase (desIII), TDP-glucose-4,6-dehydratase (desIV), and glycosyltransferase (desVII/desVIII) was constructed and transformed into S. venezuelae YJ003, a strain in which the entire gene cluster of desosamine biosynthesis is deleted. The expression plasmid pOTBP3 containing 4-aminotransferase (gerB) and 3,5-epimerase (orf9) was transformed again into S. venezuelae YJ003-OTBP1 to obtain S. venezuelae YJ003-OTBP3 for the production of 4-amino-4,6-dideoxy-L-glucose derivatives. The crude extracts obtained from S. venezuelae ATCC 15439, S. venezuelae YJ003, and S. venezuelae YJ003-OTBP3 were further analyzed by TLC, bioassay, HPLC, ESI/MS, LC/MS, and MS/MS. The results of our study clearly shows that S. venezuelae YJ003-OTBP3 constructs other new hybrid macrolide derivatives including 4-amino-4,6-dideoxy-L-glycosylated YC-17 (3, [M+ $Na^+$] m/z=464.5), methymycin (4, m/z=480.5), novamethymycin (6, m/z=496.5), and pikromycin (5, m/z=536.5) from a 12-membered ring aglycon (10-deoxymethynolide, 1) and a 14-membered ring aglycon (narbonolide, 2). These results suggest a successful engineering of a deoxysugar pathway to generate novel hybrid macrolide derivatives, including deoxyaminosugar.

Keywords

References

  1. Aguirrezabalaga, I., C. Olano, N. Allende, L. Rodriguez, A. F. Brana, C. Mendez, and J. A. Salas. 2000. Identification and expression of genes involved in biosynthesis of L-oleandrose and its intermediate L-olivose in the oleandomycin producer Streptomyces antibioticus. Antimicrob. Agents Chemother. 44: 1266-1275 https://doi.org/10.1128/AAC.44.5.1266-1275.2000
  2. Borisova, S. A., L. Zhao, C. L. Kao, and H. W. Liu. 2004. Melancon characterization of the glycosyltransferase activity of desVII: Analysis of and implications for the biosynthesis of macrolide antibiotics. J. Am. Chem. Soc. 126: 6534-6535 https://doi.org/10.1021/ja049967j
  3. Borisova, S. A., L. Zhao, D. H. Sherman, and H. W. Liu. 1999. Biosynthesis of desosamine: Construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 15: 133-136
  4. Cane, D. E., R. H. Lambalot, P. C. Prabhakaran, and W. R. Ott. 1993. Macrolide biosynthesis. 7. Incorporation of polyketide chain: Elongation intermediates into methymycin. J. Am. Chem. Soc. 115: 522-526 https://doi.org/10.1021/ja00055a023
  5. Chen, S., Y. Xue, D. H. Sherman, and K. A. Reyolds. 2000. Mechanisms of molecular recognition in the pikromycin polyketide synthase. Chem. Biol. 7: 907-918 https://doi.org/10.1016/S1074-5521(00)00039-9
  6. Draeger, G., S.-H. Park, and H. G. Floss. 1999. Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin. J. Am. Chem. Soc. 121: 2611-2612 https://doi.org/10.1021/ja9837250
  7. Gaisser, S., G. Böhm, J. Cortés, and P. F. Leadlay. 1997. Analysis of seven genes from the eryAI-eryK region of the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea. Mol. Gen. Genet. 256: 239-251 https://doi.org/10.1007/s004380050566
  8. Hong, J. S. J., S. H. Park, C. Y. Choi, J. K. Sohng, and Y. J. Yoon. 2004. New olivosyl derivatives of methymycin/ pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol. Lett. 238: 391-399
  9. Hong, J. S. J., S. J. Park, N. Parajuli, S. R. Park, H. S. Koh, W. S. Jung, C. Y. Choi, and Y. J. Yoon. 2006. Functional analysis of DesVIII homologues involved in glycosylation of macrolide antibiotics by interspecies complementation. 386: 123-130
  10. Jaishy, B. P., S. K. Lim, I. D. Yoo, J. C. Yoo, J. K. Sohng, and D. H. Nam. 2006. Cloning and characterization of a gene cluster for the production of polyketide macrolide dihydrochalcomycin in Streptomyces sp. KCTC0041BP. J. Microbiol. Biotechnol. 16: 764-770
  11. Keiser, T., M. J. Bibb, M. J. Butb1er, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich
  12. Kwon, H. J., S. Y. Lee, S. K. Hong, U. M. Park, and J. W. Suh. 1999. Heterologous expression of Streptomyces albus genes linked to an integrating element and activation of antibiotic production. J. Microbiol. Biotechnol. 19: 488-497
  13. Lee, S. K., J. W. Park, J. W. Kim, S. W. Jung, S. R. Park, C. Y. Choi, E. S. Kim, B. S. Kim, J. S. Ahn, D. H. Sherman, and Y. J. Yoon. 2006. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Nat. Prod. 69: 847-849 https://doi.org/10.1021/np060026p
  14. Lydiate, D. J., F. Malpartida, and D. A. Hopwood. 1985. The Streptomyces plasmid SCP2*: Its functional analysis and development into useful cloning vectors. Gene 35: 223-235 https://doi.org/10.1016/0378-1119(85)90001-0
  15. Nedal, A. and S. B. Zotchev. 2004. Biosynthesis of deoxyaminosugars in antibiotic producing bacteria. Appl. Microbiol. Biotechnol. 64: 7-15 https://doi.org/10.1007/s00253-003-1535-9
  16. Olano, C., A. M. Rodriguez, J. M. Michel, C. Mendez, M. C. Raynal, and J. A. Salas. 1998. Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis that contains two glycosyltransferases responsible for glycosylation of the macrolactone ring. Mol. Gen. Genet. 259: 299-308 https://doi.org/10.1007/s004380050816
  17. Park, N. S., H. J. Park, K. Han, and E. S. Kim. 2006. Heterologous expression of novel cytochrome P450 hydroxylase genes from Sebekia benihana. J. Microbiol. Biotechnol. 2006: 295-298
  18. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  19. Schlunzen, F., R. Zarivach, J. Harms, A. Bashan, A. Tocilj, R. Albrecht, A. Yonath, and F. Franceschi. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814-821 https://doi.org/10.1038/35101544
  20. Summers, R. G., S. Donadio, M. J. Staver, E. Wendt-Pienkowski, C. R. Hutchinson, and L. Katz. 1997. Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in Lmycarose and D-desosamine production. Microbiology 143: 3251-3262 https://doi.org/10.1099/00221287-143-10-3251
  21. Trefzer, A., J. A. Salas, and A. Bechthold. 1999. Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Nat. Prod. Rep. 16: 283-299 https://doi.org/10.1039/a804431g
  22. Volchegursky, Y., Z. Hu, L. Katz, and R. McDaniel. 2000. Biosynthesis of the anti-parasitic agent megalomicin: Transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Mol. Microbiol. 37: 752-762 https://doi.org/10.1046/j.1365-2958.2000.02059.x
  23. Weymouth-Wilson, F. C. 1997. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14: 99-100 https://doi.org/10.1039/np9971400099
  24. Wilkinson, C. J., Z. A. Hughes-Thomas, C. J. Martin, I. Bohm, T. Mironenko, M. Deacon, M. Wheatcroft, G. Wirtz, J. Staunton, and P. F. Leadlay. 2002. Increasing the efficiency of heterologous promoters in actinomycetes. J. Mol. Microbiol. Biotechnol. 4: 417-426
  25. Xue, Y., L. Zhao, H. W. Liu, and D. H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95: 12111-12116
  26. Zotchev, S. B. 2003. Polyene macrolide antibiotics and their application in human therapy. Curr. Med. Chem. 10: 211-223 https://doi.org/10.2174/0929867033368448