• Title/Summary/Keyword: OP-amp

Search Result 215, Processing Time 0.026 seconds

Modeling of a linear GMR Isolator Utilizing Spin Valves (스핀밸브를 이용한 선형 GMR 아이솔레이터의 모델링)

  • Park, S.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.232-235
    • /
    • 2004
  • Linear GMR isolator which is profitable for transmitting analog signal was modeled and the output voltage and current in relation to the input current were investigated. GMR isolator modeling was divided into two parts, namely magnetic and electric parts. The flow chart of the modeling was drawn in which the MR curve of the spin valves were incorporated to obtain the electrical voltage output. For magnetic modeling, 3-dimensional model of planar coil was analyzed by FEM method to obtain the magnetic field strength corresponding to the input current. Coil efficiency of the planar coil having magnetic core layer was shown to have about 1.5 times larger than that of the coil without the magnetic core layer. The feedback coil current(output current) corresponding to the input coil current was calculated to be within ${\pm}$0.25 mA of the linear fitting function of I$\_$out/= I$\_$in/-5 mA. Also, the response time and output waveforms were obtained when the coil current was a rectangular waveform. The rise time and fall time was 6 ${\mu}\textrm{s}$, respectively when the slew rate of the op-amp was 0.3 V/${\mu}\textrm{s}$.

PSPICE analysis of the Lorenz circuit using the MOS resistor (MOS 가변저항을 이용한 로렌츠 회로의 PSPICE 해석)

  • Ji, Sung-Hyun;Kim, Boo-Kang;Nam, Sang-Guk;Nguyen, Van Ha;Park, Yong Su;Song, Han Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1348-1354
    • /
    • 2015
  • In this paper, chaotic circuit of the voltage controlled Lorentz system for engineering applications has been designed and implemented in an electronic circuit. The proposed circuit consists of MOS variable resistor, multipliers, capacitors, fixed resistors and operational amplifiers. The circuit was analysed by PSPICE program. PSPICE simulation results show that chaotic dynamics of the circuit can be controlled by the MOS variable resistor through time series analysis, frequency analysis and phase diagrams. Also, we implemented the proposed circuit in an electronic hardware system with discrete elements. Measured results of the circuit showed controllability of the circuit using the MOS resistor.

Measurement System for Vehicle Electric Power using LabVIEW (LabVIEW를 이용한 자동차 발전기 전압 계측시스템)

  • So, Soon-Sun;Yang, Su-Jin;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5899-5905
    • /
    • 2014
  • Faults in electric power system can be a critical problem for vehicles. The system durability is determined mainly by the durability of their components and operating conditions. Monitoring the conditions of the electric power system may be necessary because it is very difficult to predict precisely when it will fail. Therefore, the aim of this study was to develop a diagnosis system for an electric power system of a vehicle. The alternator voltage, excitation voltage, lamp voltage, battery voltage, and engine rpm from a crank angle sensor are monitored continuously and the system fault can be then detected in real time. NI USB- 9201 DAQ and LabVIEW SW have been used to measure the voltages and analyze the data. Compared to conventional measurements for only each component, an integrated and portable measurement method was developed. In addition to the monitoring the electric power system in real time, the saved data from the measurement also provides valuable information to improve the durability of the components.

A Process Detection Circuit using Self-biased Super MOS composit Circuit (자기-바이어스 슈퍼 MOS 복합회로를 이용한 공정 검출회로)

  • Suh Benjamin;Cho Hyun-Mook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, a new process detection circuit is proposed. The proposed process detection circuit compares a long channel MOS transistor (L > 0.4um) to a short channel MOS transistor which uses lowest feature size of the process. The circuit generates the differential current proportional to the deviation of carrier mobilities according to the process variation. This method keep the two transistor's drain voltage same by implementing the feedback using a high gain OPAMP. This paper also shows the new design of the simple high gam self-biased rail-to-rail OPAMP using a proposed self-biased super MOS composite circuit. The gain of designed OPAMP is measured over 100dB with $0.2{\sim}1.6V$ wide range CMR in single stage. Finally, the proposed process detection circuit is applied to a differential VCO and the VCO showed that the proposed process detection circuit compensates the process corners successfully and ensures the wide rage operation.

  • PDF

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

Development of Tobacco Ripeness Grading Meter Using the Color Sensor (칼라센서를 이용한 담배 완숙도의 식별장치 개발)

  • 이대원;이용국
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 1994
  • A tobacco ripeness grading meter was designed and constructed using the color sensor, its performance was evaluated. A degree of ripeness grading of a leaf is very closely related to the measured tobacco leaf color. Measuring the small amount of the reflectance precisely depends on the apparatus including color sensor, light source, detector sensitivity, and geometric characteristics of appratus. To analyze and minimize the variational effects, experiments to select the proper condition were performed. Because of the combined effect mentioned above, the system has some variation on its response. Basis on the results of the experiments, prototype was developed and interfaced to a computer system. The main components of prototype included a tungsten lamp as a light source, Amorphous full color sensor with three filters, regulated D.C. power supply, OP - AMP(741 TC) for amplification, AR - B3001 board for interfacing to a computer with analog to digital conversion, and a compatible IBM PC XT computer. The experimental results of the developed ripeness tobacco leaf measurement system are summarized as following: [1] The output readings of ripeness grade meter for tobacco leaf, which is based on harvesting time, showed the apparent difference in variety of different quality. It was considered suitable that three filters(red, green, blue) in Amorphous full color sensor could be used in four different ripeness degree measurement of tobacco leaf. [2] The output readings of ripeness grade meter for tobacco leaf, which is based on government procurement, showed apparent difference in variety of different quality. Tobacco leaf varieties to stalk position are divided into tips, leaf, cutters, and primings, It is considered suitable that only red filter in the sensor could be used to classify the grade of tobacco leaf within the same kind tobacco stalk. However, the ripeness grade meter was not adequate to classify all the tobacco grades in the four different tobacco leaves.

  • PDF

A Design of Single Pixel Photon Counter for Digital X-ray Image Sensor (X-ray 이미지 센서용 싱글 픽셀 포톤 카운터 설계)

  • Baek, Seung-Myun;Kim, Tae-Ho;Kang, Hyung-Geun;Jeon, Sung-Chae;Jin, Seung-Oh;Huh, Young;Ha, Pan-Bong;Park, Mu-Hun;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.322-329
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has been designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Analysis of Leakage Current of a Laser Diode by Equivalent Circuit Model (등가회로 모델에 의한 레이저다이오드의 누설전류 해석)

  • Choi, Young-Kyu;Kim, Ki-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.330-336
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has tern designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Development of New Stacked Element Piezoelectric Polyvinylidene Fluoride Pressure Sensor for Simultaneous Heartbeat and Respiration Measurements (PVDF 압전소자를 이용한 심장박동 및 호흡수 동시측정센서개발)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Lee, So-Jin;Manh, Long-Nguyen
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.100-108
    • /
    • 2019
  • In this paper, a new stacked element pressure sensor has proposed for heartbeat and respiration measurement. This device can be directly attached to an individual's chest; heartbeat and respiration are detected by the pulsatile vibration and deformation of the chest. A key feature of the device is the simultaneous measurement of heart rate and respiration. The structure of the sensor consists of two stacked elements, in which one element includes one polyvinylidene fluoride (PVDF) thin film bonded on polydimethylsiloxane (PDMS) substrate. In addition, for the measurement and signal processing, the electric circuit and the filter are simply constructed with an OP-amp, resistance, and a capacitor. One element (element1, PDMS) maximizes the respiration signal; the other (element2, PVDF) is used to measure heartbeat. Element1 and element2 had sensitivity of 0.163V/N and 0.209V/N, respectively, and element2 showed improved characteristics compared with element1 in response to force. Thus, element1 and element2 were optimized for measuring respiration heart rate, respectively. Through mechanical and vivo human tests, this sensor shows the great potential to optimize the signals of heartbeat and respiration compared with commercial devices. Moreover, the proposed sensor is flexible, light weight, and low cost. All of these characteristics illustrate an effective piezoelectric pressure sensor for heartbeat and respiration measurements.

A Design of Power Management IC for CCD Image Sensor (CCD 이미지 센서용 Power Management IC 설계)

  • Koo, Yong-Seo;Lee, Kang-Yoon;Ha, Jae-Hwan;Yang, Yil-Suk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.63-68
    • /
    • 2009
  • The power management integrated circuit(PMIC) for CCD image sensor is presented in this study. A CCD image sensor is very sensitive against temperature. The temperature, that is heat, is generally generated by the PMIC with low efficiency. Since the generated heat influences performance of CCD image sensor, it should be minimized by using a PMIC which has a high efficiency. In order to develop the PMIC with high efficiency, the input stage is designed with synchronous type step down DC-DC converter. The operating range of the converter is from 5V to 15V and the converter is controlled using PWM method. The PWM control circuit consists of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit. The saw-tooth generator is designed with 1.2MHz oscillation frequency. The comparator is designed with the two stages OP Amp. And the error amplifier has 40dB DC gain and $77^{\circ}$ phase margin. The output of the step down converter is connected to input stage of the charge pump. The output of the charge pump is connected to input of the LDO which is the output stage of the PMIC. Finally, the PMIC, based on the PWM control circuit and the charge pump and the LDO, has output voltage of 15V, -7.5V, 3.3V and 5V. The PMIC is designed with a 0.35um process.

  • PDF