• Title/Summary/Keyword: OLETF

Search Result 32, Processing Time 0.024 seconds

The Korean Traditional Medicine Gyeongshingangjeehwan Reduces Lipid Accumulation in Skeletal Muscle and C2C12 Cells

  • Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2011
  • Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) activates AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) critical for fatty acid oxidation in skeletal muscle and C2C12 skeletal muscle cells. Thus, we examined whether GGEx can reduce lipid accumulation in these cells and tissues. After obese and type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats were treated with GGEx, we studied the effects of GGEx on skeletal muscle lipid accumulation. The effects of GGEx and/or the AMPK inhibitor compound C on lipid accumulation and expression of AMPK and $PPAR{\alpha}$ were measured in C2C12 skeletal muscle cells. Compared with lean Long-Evans Tokushima Otsuka rats, obese OLETF rats had increased triglyceride droplets. However, administration of GGEx to OLETF rats for 8 weeks significantly decreased triglyceride droplets in skeletal muscle. Consistent with the $in$ $vivo$ data, GGEx inhibited lipid accumulation, the degree of which was comparable to Wy14,643, the potent activator of $PPAR{\alpha}$. GGEx also increased skeletal muscle mRNA levels of AMPK${\alpha}1$, AMPK${\alpha}2$, and $PPAR{\alpha}$. However, compound C inhibited these effects in C2C12 cells. These results suggest that GGEx suppresses skeletal muscle lipid accumulation and this process may be mediated by AMPK and $PPAR{\alpha}$ activation.

Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats

  • Park, Jeong-Kwon;Kim, Sang-Pyo;Song, Dae-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium $(K_{ATP})$ channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of $K_{ATP}$ channels, insulin receptor ${\beta}$-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that $K_{ATP}$-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on $K_{ATP}$ channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.

The Role of Janus Kinase in Superoxide-mediated Proliferation of Diabetic Vascular Smooth Muscle Cells

  • Lee, Ji-Young;Park, Ji-Young;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • To elucidate a potential molecular link between diabetes and atherosclerosis, we investigated the role of Janus tyrosine kinase(JAK) for NAD(P)H oxidase-derived superoxide generation in the enhanced proliferative capacity of vascular smooth muscle cells(VSMC) of Otsuka Long-Evans Tokushima Fatty(OLETF) rat, an animal model of type 2 diabetes. An enhanced proliferative response to 10% fetal bovine serum(FBS) and superoxide generation with an increased NAD(P)H oxidase activity were observed in diabetic(OLETF) VSMC. Both the enhanced proliferation and superoxide generation in diabetic VSMC were significantly attenuated by AG490, JAK2 inhibitor, and PP2, Src kinase inhibitor. Tyrosine phosphorylation of proteins in diabetic VSMC, especially JAK2, was increased compared to control VSMC. Furthermore, the enhanced NAD(P)H oxidase activity in diabetic VSMC was significantly attenuated by AG490 in a dose-dependent manner. Together, these results indicate that the signal pathway which leads to diabetes-associated activation of Src kinase/JAK is critically involved in the diabetic VSMC proliferation through NAD(P)H oxidase activation and superoxide generation.

The Effects of Several Halophytes on Insulin Resistance in Otsuka Long-evans Tokushima Fatty Rats (OLETF 쥐에서 칠면초와 세발나물의 인슐린 저항성 개선 효과)

  • Cho, Jeong-Yong;Huang, Zhangjun;Park, Sun-Young;Park, Kyung-Hee;Pai, Tong-Kun;Kim, So-Young;Kim, Haeng-Ran;Ham, Kyung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.100-107
    • /
    • 2014
  • We evaluated preventive effects of Suaeda japonica (SJ) and Spergularia marina Griseb (SMG) on the insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The 10-week old OLETF rats were fed diets containing 3% (w/w) SJ and SMG for 18 weeks. Fasting blood glucose levels in SJ and SMG groups, measured using the oral glucose tolerance test, were lower than that of the control rats. The SMG group showed significantly lower levels of insulin, glycated hemoglobin, triglyceride, and total cholesterol than the control group. In addition, these levels were relatively lower in the SJ group than those in the control rats. The SJ and SMG groups had relatively lower protein levels of nuclear factor-kappa B (NF-${\kappa}B$) p65 in adipose tissue and serine phosphorylated insulin receptor substrate 1 (IRS-1) in skeletal muscle than the control group. These results suggest that SJ and SMG prevent insulin resistance and SMG in particular reduces blood triglyceride and total cholesterol levels.

Chronic Alcohol Consumption Results in Greater Damage to the Pancreas Than to the Liver in the Rats

  • Lee, Seong-Su;Hong, Oak-Kee;Ju, Anes;Kim, Myung-Jun;Kim, Bong-Jo;Kim, Sung-Rae;Kim, Won-Ho;Cho, Nam-Han;Kang, Moo-Il;Kang, Sung-Koo;Kim, Dai-Jin;Yoo, Soon-Jib
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.309-318
    • /
    • 2015
  • Alcohol consumption increases the risk of type 2 diabetes. However, its effects on prediabetes or early diabetes have not been studied. We investigated endoplasmic reticulum (ER) stress in the pancreas and liver resulting from chronic alcohol consumption in the prediabetes and early stages of diabetes. We separated Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type-2 diabetic animal model, into two groups based on diabetic stage: prediabetes and early diabetes were defined as occurrence between the ages of 11 to 16 weeks and 17 to 22 weeks, respectively. The experimental group received an ethanol-containing liquid diet for 6 weeks. An intraperitoneal glucose tolerance test was conducted after 16 and 22 weeks for the prediabetic and early diabetes groups, respectively. There were no significant differences in body weight between the control and ethanol groups. Fasting and 120-min glucose levels were lower and higher, respectively, in the ethanol group than in the control group. In prediabetes rats, alcohol induced significant expression of ER stress markers in the pancreas; however, alcohol did not affect the liver. In early diabetes rats, alcohol significantly increased most ER stress-marker levels in both the pancreas and liver. These results indicate that chronic alcohol consumption increased the risk of diabetes in prediabetic and early diabetic OLETF rats; the pancreas was more susceptible to damage than was the liver in the early diabetic stages, and the adaptive and proapoptotic pathway of ER stress may play key roles in the development and progression of diabetes affected by chronic alcohol ingestion.

The Effect of Platelet-rich Plasma on Wounds of OLETF Rats Using Expression of Matrix Metalloproteinase-2 and -9 mRNA

  • Shin, Ho-Seong;Oh, Hwa-Young
    • Archives of Plastic Surgery
    • /
    • v.39 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Background : Complicated diabetic patients show impaired, delayed wound healing caused by multiple factors. A study on wound healing showed that platelet-rich plasma (PRP) was effective in normal tissue regeneration. Nonetheless, there is no evidence that when platelet-rich plasma is applied to diabetic wounds, it normalizes the diabetic wound healing process. In this study, we have analyzed matrix metalloproteinase (MMP)-2, MMP-9 expression to investigate the effect of PRP on diabetic wounds. Methods : Twenty-four-week-old male Otsuka Long-Evans Tokushima Fatty rats were provided by the Tokushima Research Institute. At 50 weeks, wounds were arranged in two sites on the lateral paraspinal areas. Each wound was treated with PRP gel and physiologic saline gauze. To determine the expression of MMP-2, MMP-9, which was chosen as a marker of wound healing, reverse transcription polymerase chain reaction (RT-PCR) was performed and local distribution and expression of MMP-2, MMP-9 was also observed throughout the immunohistochemical staining. Results : RT-PCR and the immunohistochemical study showed that the levels of MMP-2, MMP-9 mRNA expression in PRP applied tissues were higher than MMP-2, MMP-9 mRNA expression in saline-applied tissues. MMP-9 mRNA expression in wounds of diabetic rats decreased after healing began to occur. But no statistical differences were detected on the basis of body weight or fasting blood glucose levels. Conclusions : This study could indicate the extracellular matrix-regulating effect observed with PRP. Our results of the acceleration of wound healing events by PRP under hyperglycemic conditions might be a useful clue for future clinical treatment for diabetic wounds.

Effects of Dietary Restriction on the Body Weight and Antioxidant Enzymes in Various Organs of Diabetic Rats (당뇨병 흰쥐에서 식이 제한 급여가 장기의 항산화효소 활성도 및 체중에 미치는 영향)

  • 이병래;차종희;박재윤;박영진;박평심
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.521-527
    • /
    • 2001
  • The effects of dietary restriction (DR) on antioxidant enzymes were studied in liver, lung and erythrocytes of diabetic rats. Experimental animals used Sprague-Dawley (SD; body weight 350$\pm$20g) male rats and Otsuka Long Evans Tokushima fatty (OLETE; body weight 5--$\pm$30g) male rats, as a model of type 2 diabetes mellitus. Type I diabetes was induced in SD rats by intramuscular injection of alloxan (80 mg/kg BW). Animals were randomly assigned either to continue the ad libitum diet or 40% DR (60% intake of ad libitum diet) groups. The body weight was measured at every 2 weeks to 4 months following DR. The activities of antioxidant enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GSHPx) were measured in liver, lung and erythrocytes and the concentration of TBARS as a marker of reactive oxygen species-induced tissue injry was also measured in rats after 4 months 40% DR. The body weight 4 months after 40% DR of control SD, alloxian-diabetid SD and OLETE rats were 80%, 98% and 75% of each control groups, respectively. The activities of SOD, catalase and GSHPx in lung and erythrocytes of rats were not change by 40% DR but in 4 month 40% DR rat liver, the activities of SOD and catalase were increased in control SD, alloxan-diabetic SD, and OLETF groups. The concentration of TBARS in lung and erythrocytes was also not changed by 40% DR, while liver TBARS concentration was decreased in OLETF and control SD rats compared to each non-DR control rats. These results suggested that the body weight changes in diabetic rats by DR was more prominent in type 2 diabetes and changes of antioxidant enzymes is most prominent in liver by DR either type 1 and 2 diabetic rats.

  • PDF

Overexpression of $AMPK{\alpha}1$ Ameliorates Fatty Liver in Hyperlipidemic Diabetic Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Joe, Yeon-Soo;Kang, Soo-Jeong;Kim, Mi-Sun;Hong, Sook-Hee;Park, Mi-Kyoung;Kim, Duk-Kyu;Koh, Hyong-Jong;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.449-454
    • /
    • 2009
  • 5'-AMP-activated protein kinase (AMPK) is a heterotrimeric complex consisting of a catalytic ($\alpha$) and two regulatory ($\beta$ and $\gamma$) subunits. Two isoforms are known for catalytic subunit (${\alpha}1$, ${\alpha}2$) and are encoded by different genes. To assess the metabolic effects of $AMPK{\alpha}1$, we examined the effects of overexpression of adenoviral-mediated $AMPK{\alpha}1$ in hyperlipidemic type 2 diabetic rats. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an established animal model of type 2 diabetes that exhibits chronic and slowly progressive hyperglycemia and hyperlipidemia. Thirty five-week-old overt type 2 diabetic rats (n=10) were administered intravenously with Ad.$AMPK{\alpha}1$. AMPK activity was measured by phosphorylation of acetyl CoA carboxlyase (ACC). To investigate the changes of gene expression related glucose and lipid metabolism, quantitative real-time PCR was performed with liver tissues. Overexpression of $AMPK{\alpha}1$ showed that blood glucose concentration was decreased but that glucose tolerance was not completely recovered on 7th day after treatment. Plasma triglyceride concentration was decreased slightly, and hepatic triglyceride content was markedly reduced by decreasing expression of hepatic lipogenic genes. Overexpression of $AMPK{\alpha}1$ markedly improved hepatic steatosis and it may have effective role for improving hepatic lipid metabolism in hyperlipidemic state.

Inhibition of Neointima Formation and Migration of Vascular Smooth Muscle Cells by Anti-vascular Endothelial Growth Factor Receptor-1 (Flt-4) Peptide in Diabetic Rats (당뇨병 쥐에서 혈관내피 성장인자 수용체-1 차단 펩타이드를 이용한 신내막 형성과 혈관평활근세포 이동의 억제)

  • Jo, Min-Seop;Yoo, Ki-Dong;Park, Chan-Beom;Cho, Deog-Gon;Cho, Kue-Do;Jin, Ung;Moon, Kun-Woong;Kim, Chul-Min;Wang, Young-Pil;Lee, Sun-Hee
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.264-272
    • /
    • 2007
  • Background: Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, including stimulating the proliferation and migration of vascular smooth muscle cells (VSMCs). It has been known that diabetes is associated with accelerated cellular proliferation via VEGF, as compared to that under a normal glucose concentration. We investigated the effects of selective blockade of a VEGF receptor by using anti-Flt-1 peptide on the formation and hyperplasia of the neointima in balloon injured-carotid arteries of OLETF rats and also on the in vitro VSMCS' migration under high glucose conditions. Material and Method: The balloon-injury method was employed to induce neointima formation by VEGF. For f4 days beginning 2 days before the ballon injury, placebo or vascular endothelial growth factor receptor-1 (VEGFR-1) specific peptide (anti-Flt-1 peptide), was injected at a dose of 0.5mg/kg daily into the OLETF rats. At 14 days after balloon injury, the neointimal proliferation and vascular luminal stenosis were measured, and cellular proliferation was assessed by counting the proliferative cell nuclear antigen (PCNA) stained cells. To analyze the effect of VEGF and anti-Flt-1 peptide on the migration of VSMCs under a high glucose condition, transwell assay with a matrigel filter was performed. And finally, to determine the underlying mechanism of the effect of anti-Flt-1 peptide on the VEGF-induced VSMC migration in vitro, the expression of matrix metalloproteinase (MMP) was observed by performing reverse transcription-polymerase chain reaction (RT-PCR). Result: Both the neointimal area and luminal stenosis associated with neointimal proliferation were significantly decreased in the anti-Flt-1 peptide injected rats, ($0.15{\pm}0.04 mm^2$ and $ 36.03{\pm}3.78%$ compared to $0.24{\pm}0.03mm^2\;and\;61.85{\pm}5.11%$, respectively, in the placebo-injected rats (p<0.01, respectively). The ratio of PCNA(+) cells to the entire neointimal cells was also significantly decreased from $52.82{\pm}4.20%\;to\;38.11{\pm}6.89%$, by the injected anti-Flt-1 peptide (p<0.05). On the VSMC migration assay, anti-Flt-1 peptide significantly reduced the VEGF-induced VMSC migration by about 40% (p<0.01). Consistent with the effect of anti-Flt-1 peptide on VSMC migration, it also obviously attenuated the induction of the MMP-3 and MMP-9 mRNA expressions via VEGF in the VSMCS. Conclusion: Anti-Flt-1 peptide inhibits the formation and hyperplasia of the neointima in a balloon-injured carotid artery model of OLETF rats. Anti-Flt-1 peptide also inhibits the VSMCs' migration and the expressions of MMP-3 and MMP-9 mRNA induced by VEGF under a high glucose condition. Therefore, these results suggest that specific blockade of VEGFR-1 by anti-Flt-1 peptide may have therapeutic potential against the arterial stenosis of diabetes mellitus patients or that occurring under a high glucose condition.