Inhibition of Neointima Formation and Migration of Vascular Smooth Muscle Cells by Anti-vascular Endothelial Growth Factor Receptor-1 (Flt-4) Peptide in Diabetic Rats

당뇨병 쥐에서 혈관내피 성장인자 수용체-1 차단 펩타이드를 이용한 신내막 형성과 혈관평활근세포 이동의 억제

  • Jo, Min-Seop (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Yoo, Ki-Dong (Division of Cardiology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Park, Chan-Beom (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Cho, Deog-Gon (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Cho, Kue-Do (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Jin, Ung (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Moon, Kun-Woong (Division of Cardiology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Chul-Min (Division of Cardiology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Wang, Young-Pil (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea) ;
  • Lee, Sun-Hee (Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea)
  • 조민섭 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 유기동 (가톨릭대학교 의과대학 성빈센트병원 순환기내과학교실) ;
  • 박찬범 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 조덕곤 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 조규도 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 진웅 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 문건웅 (가톨릭대학교 의과대학 성빈센트병원 순환기내과학교실) ;
  • 김철민 (가톨릭대학교 의과대학 성빈센트병원 순환기내과학교실) ;
  • 왕영필 (가톨릭대학교 의과대학 흉부외과학교실) ;
  • 이선희 (가톨릭대학교 의과대학 흉부외과학교실)
  • Published : 2007.04.05

Abstract

Background: Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, including stimulating the proliferation and migration of vascular smooth muscle cells (VSMCs). It has been known that diabetes is associated with accelerated cellular proliferation via VEGF, as compared to that under a normal glucose concentration. We investigated the effects of selective blockade of a VEGF receptor by using anti-Flt-1 peptide on the formation and hyperplasia of the neointima in balloon injured-carotid arteries of OLETF rats and also on the in vitro VSMCS' migration under high glucose conditions. Material and Method: The balloon-injury method was employed to induce neointima formation by VEGF. For f4 days beginning 2 days before the ballon injury, placebo or vascular endothelial growth factor receptor-1 (VEGFR-1) specific peptide (anti-Flt-1 peptide), was injected at a dose of 0.5mg/kg daily into the OLETF rats. At 14 days after balloon injury, the neointimal proliferation and vascular luminal stenosis were measured, and cellular proliferation was assessed by counting the proliferative cell nuclear antigen (PCNA) stained cells. To analyze the effect of VEGF and anti-Flt-1 peptide on the migration of VSMCs under a high glucose condition, transwell assay with a matrigel filter was performed. And finally, to determine the underlying mechanism of the effect of anti-Flt-1 peptide on the VEGF-induced VSMC migration in vitro, the expression of matrix metalloproteinase (MMP) was observed by performing reverse transcription-polymerase chain reaction (RT-PCR). Result: Both the neointimal area and luminal stenosis associated with neointimal proliferation were significantly decreased in the anti-Flt-1 peptide injected rats, ($0.15{\pm}0.04 mm^2$ and $ 36.03{\pm}3.78%$ compared to $0.24{\pm}0.03mm^2\;and\;61.85{\pm}5.11%$, respectively, in the placebo-injected rats (p<0.01, respectively). The ratio of PCNA(+) cells to the entire neointimal cells was also significantly decreased from $52.82{\pm}4.20%\;to\;38.11{\pm}6.89%$, by the injected anti-Flt-1 peptide (p<0.05). On the VSMC migration assay, anti-Flt-1 peptide significantly reduced the VEGF-induced VMSC migration by about 40% (p<0.01). Consistent with the effect of anti-Flt-1 peptide on VSMC migration, it also obviously attenuated the induction of the MMP-3 and MMP-9 mRNA expressions via VEGF in the VSMCS. Conclusion: Anti-Flt-1 peptide inhibits the formation and hyperplasia of the neointima in a balloon-injured carotid artery model of OLETF rats. Anti-Flt-1 peptide also inhibits the VSMCs' migration and the expressions of MMP-3 and MMP-9 mRNA induced by VEGF under a high glucose condition. Therefore, these results suggest that specific blockade of VEGFR-1 by anti-Flt-1 peptide may have therapeutic potential against the arterial stenosis of diabetes mellitus patients or that occurring under a high glucose condition.

배경: 혈관내피 성장인자(vascular endothelial growth factor, VEGF)는 혈관평활근세포(vascular smooth muscle cell)의 증식과 이동을 촉진함으로써 혈관신생에 중요한 역할을 한다. 당뇨병은 VEGF의 발현과 연관되어 정상 혈당상태에서 보다 세포의 증식을 더욱 촉진시킨다. 당뇨병쥐에서 VEGF 수용체의 선택적 차단이 손상된 혈관에서 신내막 형성과 혈관평활근세포의 이동에 미치는 영향에 대해 알아보고자 했다. 대상 뜻 방법: 당뇨병 쥐의 경동맥 풍선손상 모델에서 위약을 투여하거나, 혈관내피 성장 인자 수용체-1(VEGFR-1)에 선택적으로 작용하는 항-Flt-1 펩타이드(anti-Flt-1 peptide; Gly-Asn-Gln-Trp-Phe-Ile)를 풍선손상 2일 전부터 0.5mg/kg의 용량으로 2주간 매일 투여한 군으로 나누어 Hematoxylin-Eosin 염색을 하여 신내막의 형성정도와 혈관내강의 협착정도를 비교하였으며, proliferative cell nuclear antigen (PCNA)에 대한 면역조직화학염색법을 시행하여 세포의 증식정도를 관찰하였다. 혈관평활근세포를 고혈당환경에서 배양하고 transwell assay를 시행하여 혈관평활근세포의 이동 정도를 측정하였다. 고혈당 환경에서 자라고 있는 혈관평활근세포에 50ng/mL의 VEGF를 단독 또는 3ug/mL의 항-Flt-1 펩타이드와 함께 처리하고 일정시간이 지난 후 matrigel filter를 통과한 세포를 세어 아무런 처치를 받지 않은 세포가 이동한 정도와 비교하였다. 또한, 혈관평활근세포에 세포이동 정도 측정 시와 같은 처리를 한 후, RNA를 분리하고 reverse transcription-polymerase chain reaction (RT-PCR)을 시행하여 기질금속단백분해효소(matrix metalloprotenase, MMP)의 발현 정도를 관찰하였다. 결과: 신내막의 면적은 위약 투여 쥐는 $0.24{\pm}0.03 mm^2$이었으나, 항-Flt-1 펩타이드의 처리에 의해 $0.15{\pm}0.04 mm^2$로 유의하게 감소하였으며(p<0.01), 신내막 형성에 따른 내강의 협착 정도도 위약 투여 쥐는 $61.85{\pm}5.11%$, 항-Flt-1 펩타이드 투여 쥐는 $36.03{\pm}3.78%$로 항-Flt-1 펩타이드 투여에 의하여 유의하게 감소하였다(p<0.01). 신내막의 전체 세포수에 대한 PCNA(+)인 세포를 백분율로 구하였으며, 위약 투여 쥐와 항- Flt-1 펩타이드 투여 쥐에서 각각 $52.82{\pm}4.20%,\;38.11{\pm}6.89%$로 나타나 항-Flt-1 펩타이드를 투여한 쥐에서 PCNA(+)인 세포가 유의하게 적음을 보이고 있다(p<0.05). 혈관평활근세포의 이동 정도 측정에서는 항-Flt-1 펩타이드 처리에 의하여 VEGF에 의한 혈관평활근 세포의 이동이 유의하게 감소하였다(p<0.01). 또한, 항-Flt-1 펩타이드 처리에 의하여 VEGF에 의한 MMP-3와 MMP-9 mRNA의 발현 증가가 억제되었다. 결론: 항-Flt-1 펩타이드는 당뇨병쥐의 경동맥손상모델에서 신내막 형성을 억제하였으며, 고혈당 환경에서 배양된 혈관평활근세포의 이동과, MMP-3와 MMP-9의 활성을 억제하였다.

Keywords

References

  1. Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 1992;19:267-74 https://doi.org/10.1016/0735-1097(92)90476-4
  2. Kimura T, Kaburagi S, Tamura T, et al. Remodeling of human coronary arteries undergoing coronary angioplasty or atherectomy. Circulation 1997;96:475-83 https://doi.org/10.1161/01.CIR.96.2.475
  3. Post MJ, de Smet BJ, Van der Helm Y, Borst C, Kuntz RE. Arterial remodeling after balloon angioplasty or stenting in an atherosclerotic epxerimental model. Circulation 1997;96:996-1003 https://doi.org/10.1161/01.CIR.96.3.996
  4. Owens Gk. Regulation and differentiation of vascular smooth muscle cells. Physiol Rev 1995;75:487-517 https://doi.org/10.1152/physrev.1995.75.3.487
  5. Sartore S, Franch R, Reelofs M, Chiavegato A. Molecular and cellular phenotypes and their regulation in smooth muscle. Rev Physiol Biochem Pharmacol 1999;134:235-320
  6. Zalewski A, Shi Y. Vascular myofibroblasts: lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol 1997;17:417-22 https://doi.org/10.1161/01.ATV.17.3.417
  7. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280:C1358-66 https://doi.org/10.1152/ajpcell.2001.280.6.C1358
  8. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996;87:3336-43
  9. Clauss M, Weich H, Breier G, et al. The vascular endothelial growth factor receptor FLT-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996;271;17269-34
  10. Connolly DT, Olander JV, Heuvelman D, et al. Human vascular permeability factor; isolation from U937 cells. J Biol Chem 1989;264:200017-24
  11. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13:9-22 https://doi.org/10.1096/fasebj.13.1.9
  12. Newby AC. Dual role of matrix metalloproteinases (Matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005;85:1-31 https://doi.org/10.1152/physrev.00048.2003
  13. Wang H, Keiser JA. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells; role of flt-1. Circ Res 1998;83:832-40 https://doi.org/10.1161/01.RES.83.8.832
  14. Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006;69:614-24 https://doi.org/10.1016/j.cardiores.2005.08.002
  15. Natarajan R, Bai W, Lanting L, Gonzales N, Nadler J. Effects of high glucose on vascular endothelial growth factor expression in vascular smooth muscle cells. AJP-Heart 1997;273:2224-31
  16. Aiello LP, Pierce EA, Foley ED, et al. Supression of retinal neovascularization in vivo by inhbition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995;92:10457-61
  17. Sone H, Kawakami Y, Okuda Y, et al. Vascular endothelial growth factor is induced by long-term high glucose concentration and up-regulated by acute glucose deprivation in cultured bovine retinal pigmented epithelial cells. Biochem Biophys Res Commun 1996;221:193-8 https://doi.org/10.1006/bbrc.1996.0568
  18. Bae DG, Kim TD, Li G, Yoon WH, Chae CB. Anti-flt1 peptide, a vascular endothelial growth factor receptor 1- specific hexapeptide, inhibits tumor growth and metastasis. Clin Cancer Res 2005;11:2651-61 https://doi.org/10.1158/1078-0432.CCR-04-1564
  19. Peiro C, Lafuente N, Matesanz N, et al. High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br J Pharmacol 2001;133:967-74 https://doi.org/10.1038/sj.bjp.0704184
  20. Hidaka Y, Eda T, Yonemoto M, Kamei T. Inhibition of cultured vascular smooth cell migration by simbastatin (MK-733). Atherosclerosis 1992;95:87-94 https://doi.org/10.1016/0021-9150(92)90179-K
  21. Liu S, Wang L, Wang W, et al. TSC-36/FRP inhibits vascular smooth muscle cell proliferation and migration. Exp Mol Pathol 2006;80:132-40 https://doi.org/10.1016/j.yexmp.2005.07.005
  22. Grunwald J, Schaper W, Mey J, Hauss WH. Special characteristics of cultured smooth muscle cell subtypes of hypertensive and diabetic rats. Artery 1982;11:1-14
  23. Ruef J, Hu ZY, Yin LY, et al. Induction of vascular endothelial growth factor in balloon-injured babboon arteries: a novel role for reactive oxygen species in atherosclerosis. Circ Res 1997;81:24-33 https://doi.org/10.1161/01.RES.81.1.24
  24. Kliche S, Waltenberger J. VEGF receptor signaling and endothelial function. IUBMB Life 2001;52:61-6 https://doi.org/10.1080/15216540252774784
  25. Suarez SC, Fjälman AZ, Hofer KB. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006;63:601-15 https://doi.org/10.1007/s00018-005-5426-3
  26. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249-57 https://doi.org/10.1038/35025220
  27. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002;8:831-40 https://doi.org/10.1038/nm731
  28. Zempo N, Kenagy RD, Au T, et al. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg 1994;20:209-17 https://doi.org/10.1016/0741-5214(94)90008-6
  29. Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 1994;75:539-45 https://doi.org/10.1161/01.RES.75.3.539
  30. Mason DP, Kenagy RD, Hasenstab D, Bowen-Popes DF, Seifert RA, Coats S. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the rat carotid artery. Circ Res 1999;85:1179-85 https://doi.org/10.1161/01.RES.85.12.1179