Browse > Article

Ameliorating Effects of Sulfonylurea Drugs on Insulin Resistance in Otsuka Long-Evans Tokushima Fatty Rats  

Park, Jeong-Kwon (Departments of Physiology and Chronic Disease Research Center, Keimyung University School of Medicine)
Kim, Sang-Pyo (Departments of Pathology, Keimyung University School of Medicine)
Song, Dae-Kyu (Departments of Physiology and Chronic Disease Research Center, Keimyung University School of Medicine)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.12, no.1, 2008 , pp. 7-12 More about this Journal
Abstract
OLETF (Otsuka Long-Evans Tokushima Fatty) rats are characterized by obesity-related insulin resistance, which is a phenotype of type 2 diabetes. Sulfonylurea drugs or benzoic acid derivatives as inhibitors of the ATP-sensitive potassium $(K_{ATP})$ channel are commercially available to treat diabetes. The present study compared sulfonylurea drugs (glimepiride and gliclazide) with one of benzoic acid derivatives (repaglinide) in regard to their long-term effect on ameliorating insulin sensitivity in OLETF rats. Each drug was dissolved and fed with drinking water from 29 weeks of age. On high glucose loading at 45 weeks of age, response of blood glucose recovery was the greatest in the group treated with glimepiride. On immunohistochemistry analysis for the Kir6.2 subunit of $K_{ATP}$ channels, insulin receptor ${\beta}$-subunits, and glucose transporters (GLUT) type 2 and 4 in liver, fat and skeletal muscle tissues, the sulfonylurea drugs (glimepiride and gliclazide) were more effective than repaglinide in recovery from their decreased expressions in OLETF rats. From these results, it seems to be plausible that $K_{ATP}$-channel inhibitors containing sulfonylurea moiety may be much more effective in reducing insulin resistance than those with benzoic acid moiety. In contrast to gliclazide, non-tissue selectivity of glimepiride on $K_{ATP}$ channel inhibition may further strengthen an amelioration of insulin sensitivity unless considering other side effects.
Keywords
Diabetic rat; Sulfonylureas; $K_{ATP}$ channel; Glucose transporters;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115: 2047-2058, 2005   DOI   ScienceOn
2 Bajaj M, Defronzo RA. Metabolic and molecular basis of insulin resistance. J Nucl Cardiol 10: 311-323, 2003   DOI   ScienceOn
3 Handberg A, Vaag A, Damsbo P, Beck-Nielsen H, Vinten J. Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients. Diabetologia 33: 625-627, 1990   DOI   ScienceOn
4 Kawamori R, Morishima T, Kubota M, Matsuhisa M, Ikeda M, Kamada T. Influence of oral sulfonylurea agents on hepatic glucose uptake. Diabetes Res Clin Pract 28 Suppl: S109-113, 1995   DOI   ScienceOn
5 Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41: 1422-1428, 1992   DOI   ScienceOn
6 Koike T, Tomoda F, Kinuno H, Inoue H, Takata M. Abnormal renal structural alterations during the development of diabetes mellitus in Otsuka Long-Evans Tokushima Fatty rats. Acta Physiol Scand 184: 73-81, 2005   DOI   ScienceOn
7 Kumar N, Dey CS. Gliclazide increases insulin receptor tyrosine phosphorylation but not p38 phosphorylation in insulin-resistant skeletal muscle cells. J Exp Biol 205: 3739-3746, 2002   PUBMED
8 Minami K, Morita M, Saraya A, Yano H, Terauchi Y, Miki T, Kuriyama T, Kadowaki T, Seino S. ATP-sensitive $K^+$ channel-mediated glucose uptake is independent of IRS-1/phosphatidylinositol 3-kinase signaling. Am J Physiol Endocrinol Metab 285: E1289-1296, 2003   DOI
9 Muller G, Satoh Y, Geisen K. Extrapancreatic effects of sulfonylureas- a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Pract 28 Suppl: S115-137,   DOI   ScienceOn
10 Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M, Novials A, Rottiers R, Rutten GE, Shaw KM. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 34: 535-542, 2004   DOI   ScienceOn
11 UKPDS. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352: 837-853, 1998   DOI   PUBMED   ScienceOn
12 Lebovitz HE, Feinglos MN, Bucholtz HK, Lebovitz FL. Potentiation of insulin action: a probable mechanism for the anti-diabetic action of sulfonylurea drugs. J Clin Endocrinol Metab 45: 601-604, 1977   DOI   PUBMED
13 Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes 51 Suppl 3: S368-376, 2002   DOI   ScienceOn
14 Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39: 865-870, 1990   DOI   ScienceOn
15 Boyd JJ, Contreras I, Kern M, Tapscott EB, Downes DL, Frisell WR, Dohm GL. Effect of a high-fat-sucrose diet on in vivo insulin receptor kinase activation. Am J Physiol 259: E111-116, 1990
16 Kahn BB. Lilly lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 45: 1644-1654, 1996   DOI   PUBMED   ScienceOn
17 Eisenberg ML, Maker AV, Slezak LA, Nathan JD, Sritharan KC, Jena BP, Geibel JP, Andersen DK. Insulin receptor (IR) and glucose transporter 2 (GLUT2) proteins form a complex on the rat hepatocyte membrane. Cell Physiol Biochem 15: 51-58, 2005   DOI   PUBMED   ScienceOn
18 Rodriguez E, Pulido N, Romero R, Arrieta F, Panadero A, Rovira A. Phosphatidylinositol 3-kinase activation is required for sulfonylurea stimulation of glucose transport in rat skeletal muscle. Endocrinology 145: 679-685, 2004   DOI   ScienceOn
19 Mori Y, Komiya H, Kurokawa N, Tajima N. Comparison of the effects of glimepiride and glibenclamide on adipose tissue tumour necrosis factor-alpha mRNA expression and cellularity. Diabetes Obes Metab 6: 28-34, 2004   DOI   ScienceOn
20 Toide K, Man ZW, Asahi Y, Sato T, Nakayama N, Noma Y, Oka Y, Shima K. Glucose transporter levels in a male spontaneous non-insulin-dependent diabetes mellitus rat of the Otsuka Long-Evans Tokushima Fatty strain. Diabetes Res Clin Pract 38: 151-160, 1997   DOI   ScienceOn
21 Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53: 1959-1965, 2004   DOI   ScienceOn
22 Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729-733, 2001   DOI   ScienceOn
23 Wasada T, Yano T, Ohta M, Yui N, Iwamoto Y. ATP-Sensitive potassium channels modulate glucose transport in cultured human skeletal muscle cells. Endocr J 48: 369-375, 2001   DOI   ScienceOn
24 Marin P, Rebuffe-Scrive M, Smith U, Bjorntorp P. Glucose uptake in human adipose tissue. Metabolism 36: 1154-1160, 1987   DOI   ScienceOn
25 Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264: E855-862, 1993
26 Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 95: 2111-2119, 1995   DOI   ScienceOn
27 Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. Defective insulin secretion and enhanced insulin action in $K_{ATP}$ channel-deficient mice. Proc Natl Acad Sci U S A 95: 10402-10406, 1998