• Title/Summary/Keyword: OClO

Search Result 142, Processing Time 0.025 seconds

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Preparation of Nano-sized Zirconia Powders by the Impregnation Method (함침법에 의한 지르코니아 나노 분말의 합성)

  • Han, Cheong-Hwa;Kim, Soo-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The nano-sized zirconia powders were synthesized in an impregnation method using pulp and $ZrOCl_2{\cdot}8H_2O$ as an initial material. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powder was controlled by preparation conditions, such as drying temperature and time. As a result of the various drying and calcination conditions, 30~50 nm sized homogeneous zirconia particles were obtained at $800^{\circ}C$ for 1 h. Crystallization and the rapid growth of particles were accelerated with increasing calcination temperature and time. Tetragonal phase generated below $800^{\circ}C$ were transferred to monoclinic phase with increasing calcination temperature and time. Moreover, above $800^{\circ}C$, heat treatment time had very large influence on the particle growth, and the change of drying condition also had large influence on the growth of a crystal.

Synthesis of Pizoceramic (PZT) Powder by Wet-direct Process (습식 직접 합성법에 의한 세라믹(PZT) 분말의 합성)

  • Lee, S.H.;Kim, H.G.;Choi, H.I.;Seul, S.D.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.265-268
    • /
    • 1990
  • In this study, PZT powder prepared by the wet direct process was synthesized. As starting materials, $TiCl_4$. $ZrOCl_2{\cdot}8H_2O$ and PbO were used. Uniformly shape and fine-grained PZT powder was obtained by the wet-direct process and PZT powder was characterized by XRD, DTA analysis. The X-ray diffraotion peaks from the PZT powder were observed at 700($^{\circ}C$) or over.

  • PDF

Enhancement of Performance of Dye-Sensitized Solar Cell by Reducing the Interface Resistance (계면저항 감소를 통한 염료감응형 태양전지 성능 향상)

  • Kim, Hwi-Dong;Kim, Ki-Hoon;Ahn, Ji-Young;Kim, Soo-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.360-363
    • /
    • 2009
  • In order to improve the overall power conversion efficiency, it is very important to reduce the interface resistance of dye-sensitized solar cells (DSSCs). In this approach, tiny $TiO_2$ nanoparticles with the primary size of 10~20nm were synthesized and deposited between FTO glass and preformed $TiO_2$ layer by $TiOCl_2$ treatment, and also Pt catalysts were deposited on the counter electrode by both ion-sputter and thermal deposition to reduce the electrolyte-counter electrode interface resistance. The influence of these processes on the performace of DSSCs were discussed in terms of fill factor, short circuit current, and conversion efficiency.

  • PDF

MEASUREMENT OF ADHESION OF ROOT CANAL SEALER TO DENTINE AND GUTTA-PERCHA (상아질과 Gutta-Percha에 대한 근관충전용 Sealer의 결합강도의 측정)

  • Her, Mi-Ja;Yu, Mi-Kyung;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.89-99
    • /
    • 2003
  • The purpose of this study was to investigate the bonding of resin- based root canal sealer, AH26 when the sealer was applied as a thin layer between dentine and gutta-percha surface. In this study forty non-caries extracted human molars and resin-based root canal sealer(AH 26, DeTrey/Dentsply, Germany) were used. Disks of gutta-percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for thermoplastic obturation were used and dentin surfaces were treated with 2% NaOCl(Group 1) or 2%NaOCl+17% EDTA(Group 3). Disks of gutta-Percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for conventional obturation were used and dentin surface were treated with 2% NaOCl(Group 2) or 2%NaOCl+17% EDTA(Group 4). Enamel was removed by a horizontal section 1mm below the deepest portion of the central occlusal groove by using a watercooled low speed diamond saw. A second horizontal section was done around cementoenamel junction. Exposed dentin surface was cut to approximately $8{\times}8{\;}mm$ rectangular shape and was ground against 320, 400, 600 grade silicon carbide abrasive paper serially. After grinding, the dentine surface were soaked in a solution of 2% NaOCl for 30 minutes and twenty of specimens were treated with 17% EDTA solution for 1 minute. The treated specimens were washed and dried, Root canal sealer, AH26 was prepared according to the manufacture's instructions The Gutta-percha and dentin surface were coated with a thin layer of the freshly mixed seal or. The specimens were left overnight at room temperature. After their initial set, they were transferred to an incubator at $37$^{\circ}C$ for 72 h. After 72 hours, resin blocks were made. The resin block was serially sectioned vertically into stick of $1{\cdot}1mm$. Twenty sticks were prepared from each group. After that, tensile bond strength f3r each stick was measured with Microtensile Tester Failure patterns of the specimens at the interface between gutta-percha and dentin were observed under the SEM(x1000) and Stereomicroscope (LEICA M42O, Meyer Inst., TX U.S.A) at 1.25 x25 magnification. The results were statistically analysed by using a One-way ANOVA and Tukey's test. The results were as follows; 1. Tensile bond strengths($mean{\pm}SD$) were expressed with ascending order as follows: Group 1, $3.09{\pm}$ 1.05Mpa : Group 2, $6.23{\pm}1.16MPa$ : Group 3, $7.12{\pm}1.07MPa$ : Group 4, $10.32{\pm}2.06MPa$. 2. Tensile bond strengths of the group 2 and 4 used disks of gutta-percha for conventional obturation were significantly higher than that of the group 1 and 3 used fir thermoplastic obturation. (p < 0.05). 3. Tensile bond strengths of the group 3 and 4 treated with 2% NaOC1+17% EDTA were significantly higher than that of the group 1 and 2 treated with 2% NaOCl. (p < 0.05). 4. In analysis of failure patterns at the interface between sealer and gutta-percha, there were observed 49 (61%)cases of adhesive failure patterns and 31 (39%) cases of mixed failures patterns.

Synthesis and Mechanical Properties of Mullite-PSZ Composites by Sol-Gel Process (Sol-Gel법에 의한 Mullite-PSZ 복합체의 제조 및 특성에 관한 연구)

  • 최용식;박일주;이경희;이병하;김영호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.399-405
    • /
    • 1991
  • Mullite-PSZ powders were synthesized by the sol-gel process using Al(sec-OC4H9)3, Si(OC2H5)4, ZrOCl2$.$8H2O and YCl3 solution and the characteristics of synthesized powders were studied. The sinterability and mechanical properties of powder compacts sintered at 1670$^{\circ}C$ for 4hr were also studied for various PSZ contents. ${\gamma}$-Al2O3(Al-Si spinel) formed at 980$^{\circ}C$ from amorphous dried gel, and mullite as well as ZrO2 formed above 1200$^{\circ}C$. At the room temperature, ZrO2 was a mixture of tetragonal and monoclinic phases. The specimens were densified to 97∼98% except the specimen containing 25 vol% PSZ which showed the relative density of 94%. The K1c value increased with the PSZ content and showed a maximum value of 4.1 MN/m3/2 at 25 vol% PSZ; this value was about 50% higher than that of the mullite without PSZ. Flexural strength had a maximum value of 280 Mn/㎡ at 20 vol% PSZ. In contrast, at 25 vol%, the flexural strength was even lower than that of the mullite possibly due to higher porosity of 6%.

  • PDF

The effect of Sodium Concentrations on the Formation of Nanotubes Obtained from $TiO_2$

  • Qamar, M.;Lee, N.H.;Yoon, C.R.;Oh, H.J.;Kim, S.J.;Hwang, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.123-125
    • /
    • 2006
  • The $TiO_2$ sol was prepared hydrothermally in an autoclave from aqueous $TiOCl_2$ solutions as a starting precursor. Hollow fibers were obtained when the sol-gel-derived $TiO_2$ sol was treated chemically with a NaOH solution and subsequently heated in the autoclave under various conditions. A systematic analysis of the influence of different NaOH concentrations on the formation of nanotubes was carried out. The details of the nanotubular structure were investigated by using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). From the TEM images, the outer and the inner diameters of the tubes were measured to be about 8 and 4 nm, respectively, the lengths were measured to be several hundreds of nanometers.

  • PDF

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation (균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가)

  • Hwang D. S;Lee N. H;Lee H. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Hafnium Oxide Layer Based Metal-Oxide-Semiconductor (MOS) Capacitors with Annealing Temperature Variation

  • Lee, Na-Yeong;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.1-318.1
    • /
    • 2016
  • Hafnium Oxide (HfOx) has been attracted as a promising gate dielectric for replacing SiO2 in gate stack applications. In this paper, Metal-Oxide-Semiconductor (MOS) capacitor with solution processed HfO2 high-k material as a dielectric were fabricated. The solvent using $HfOCl2{\cdot}8H2O$ dissolve in 2-Methoxy ethanol was prepared at 0.3M. The HfOx layers were deposited on p-type silicon substrate by spin-coating at $250^{\circ}C$ for 5 minutes on a hot plate and repeated the same cycle for 5 times, followed by annealing process at 350, 450 and $550^{\circ}C$ for 2 hours. When the annealing temperature was increased from 350 to $550^{\circ}C$, capacitance value was increased from 337 to 367 pF. That was resulted from the higher temperature of HfOx which have more crystallization phase, therefore dielectric constant (k) was increased from 11 to 12. It leads to the formation of dense HfOx film and improve the ability of the insulator layer. We confirm that HfOx layer have a good performance for dielectric layer in MOS capacitors.

  • PDF

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.