• Title/Summary/Keyword: OCP(Open Circuit Potential)

Search Result 48, Processing Time 0.027 seconds

Micromachining of Si substrate Using Electrochemical Etch-Stop in Aqueous TMAH/IPA/pyrazine Solution (TMAH/IPA/Pyrazine 수용액에서 전기화학적 식각정지법을 이용한 Si 기판의 미세가공)

  • 박진성;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.397-400
    • /
    • 1997
  • This paper presentes the characteristics of Si anisotropic etching and electrochemical etch-stop in aqueous TMAH/IPA/pyrazine solution. (100) Si etching rate of 0.747 $\mu\textrm{m}$/min which faster 86% than TMAH 25 wt.%/IPA 17 vol.% solution was obtained using best etching condition at TMAH 25 wt.%/IPA 17 vol.%/pyrazine 0.1 g and the etching rate of (100) Si was decreased with more additive quantity of pyrazine. I-V curve of p-type Si in TMAH/IPA/pyrazine was obtained. OCP(Open Circuit Potential) and PP(Passivation Potential) were -2 V and -0.9 V, respectively. Si diaphragms were obtained by electrochemical etch-stop in aqueous TMAH/IPA/pyrazine solution.

  • PDF

Pickling of oxidized 304 Stainless Steel using Waste Acids from Etching Process of Silicon Wafer (실리콘 웨이퍼 에칭공정으로부터 발생(發生)된 폐산(廢酸)을 이용(利用)한 스테인리스 스틸의 산세거동(酸洗擧動) 연구(硏究))

  • Kim, Min-Seuk;Ahn, Jong-Gwan;Kim, Hong-In;Kim, Ju-Yup;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.36-45
    • /
    • 2008
  • Pickling of oxidized 304 stainless steel has been investigated using rotating disk electrode in waste acid solutions generated from the etching process of silicon wafer in order to recycle them. The waste acid solution contained acetic, nitric, hydrofluoric acids, and silicon of $19.6g/L^{-1}$. Electrochemical behavior during the pickling was distinctively different between the original and silicon-removed acid solutions. Open circuit potential was continuously changed in the original solution, while it was discontinuously changed and fluctuated in the silicon-removed solution. Fast and abrupt removal of surface oxide layer with severe pitting was observed in the silicon-removed solution. It was found that solution temperature had the most influential effect on glossiness. Surface glossiness after pickling was decreased with solution temperature. At the same condition, the glossiness was higher in the original solution than in the silicon-removed solution.

Effect of Zincate Treatment Time on Dissolution Behavior and Deposition of Copper on AZ31 Mg alloy in Pyrophosphate Bath

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.194.1-194.1
    • /
    • 2016
  • The present study investigated the effect of zincate treatment time on the dissolution behavior and the deposition of copper by immersion process and electroplating process on AZ31 Mg alloy substrate in a copper pyrophosphate bath. Without zincate pretreatment, the AZ31 Mg substrate quickly dissolved in the copper pyrophosphate solution although an external cathodic current was applied. The copper layers deposited on non-zincate treated AZ31 Mg alloy substrate by both immersion and electroplating processes showed very porous structure and very poor adhesion. With increasing zincate treatment time up to 2 min, the dissolution of AZ31 substrate in pyrophosphate solution rapidly decreased and the deposited copper layer was less porous and exhibited stronger adhesion. The immersion of AZ31 Mg sample in zincate solution for 5 min was found as a critical time for producing a non-porous and adherent electrodeposited copper layer on AZ31 Mg alloy. The optimum zincating time can be determined by observing the open circuit potential (OCP) of AZ31 Mg alloy samples in a copper pyrophosphate electroplating bath. The OCP reached a stable value of about -0.10 V (vs. SCE) after 5 min of immersion in the copper pyrophosphate electroplating solution.

  • PDF

Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride - Containing Simulated Cooling Water

  • Shaban, Abdul;Felhosi, Ilona;Vastag, Gyongyi
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite ($NaNO_2$) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance ($R_p$) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained $R_p$ values and the inhibition efficiency improved by increasing the inhibitor concentration.

Study on the Effects of Oxidant on Chemical Passivation Treatment of Low Nickel Stainless Steel (저니켈 스테인리스강의 화학적 부동태막 형성에 산화제가 미치는 영향)

  • Choi, Jong-Beom;Lee, Kyung-Hwang;Yun, Yong-Sup
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.3
    • /
    • pp.172-178
    • /
    • 2018
  • In this paper, effects of potassium permanganate, pottasium dichromate, sodium molybdate on lean duplex stainless steel were studied by GDOES, OCP, potentiodynamic curves. The stainless steels were chemically passivated in each nitric acid solutions containing 4wt.% oxidants for 1 hour. As a result, when potassium dichromate or sodium molybdate was added, content of Fe was decreased and content of Cr was increased. Consequently, corrosion resistance of passive film was increased. But in case of potassium permanganate was added, contrastively, content of Fe was increased and content of Cr was decreased. So corrosion resistance was decreased. Adding sodium molybdate in nitric acid for chemical surface treatment process was the most effective among oxidants and also it showed the most stable anti-corrosion in SST.

Fabrication of Clark-type Sensor for Measuring Dissolved Oxygen Using FEP Membrane (FEP 멤브레인을 이용한 용존 산소 측정용 Clark-type 센서 제작)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young Mi;Pak, Jung Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.276-277
    • /
    • 2007
  • 본 논문에서는 미량의 세포를 포함한 용액 내에서 세포의 산소호흡량을 측정하기 위해 FEP(Fluorinated Ethylene Propylene)를 멤브레인으로 사용한 Clark-type 센서를 제안하였다. 제안된 Clark-type 센서는 3-전극 시스템을 구성하는 유리 기판, 산소를 선택적으로 투과 시키는 FEP 멤브레인과 세포를 담을 수 있는 PDMS reservoir로 구성된다. 산소 센서의 3-전극 시스템에서 작업 전극과 상대 전극으로는 Au, 기준 전극으로는 Ag/AgCl을 사용하였다. 기준 전극은 Ag 전극을 0.1M KCl/Tris-HCl 용액에서 chlorination하여 표면에 AgCl이 형성되도록 하였고, OCP(Open Circuit Potential) test를 수행한 결과 2시간 동안 안정적인 OCP 특성을 보여 좋은 내구성을 가짐을 확인하였다. 또한, 산소 유무에 따른 cyclic voltammetry 그래프의 차이를 확인하고, amperometry로 감도 및 반응 시간, 선형성을 측정/분석하였다. 제작된 산소 센서는 40초의 90% 반응 시간과 0.994의 아주 좋은 선형 상관계수를 보여주었다.

  • PDF

Effect of Fe(NO3)2 Concentration on Electrochemical Behavior of SCM430 in Zinc Phosphate Conversion Coating Solution (아연계 인산염 피막용액에서 Fe(NO3)2 농도가 SCM430 합금의 전기화학적 거동에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.4
    • /
    • pp.233-238
    • /
    • 2019
  • The formation behavior of zinc phosphate conversion coating (ZPCC) on SCM430 alloy was investigated in 25 vol.% of 1M ZnO + 170 ml/L solution containing various $Fe(NO_3)_2$ concentrations, using open-circuit potential(OCP), electrochemical impedance spectroscopy(EIS), cyclic polarization(CP) curve and tape peel test. OCP of SCM430 alloy and corrosion current density increased with increasing $Fe(NO_3)_3$ concentration. Resistance of films formed on SCM430 alloy by chemical conversion treatment decreased with increasing $Fe(NO_3)_3$ concentration. Color and adhesion of chemical conversion coatings became darker and worse, respectively, with increasing $Fe(NO_3)_3$ concentration. It is concluded that addition of $Fe(NO_3)_3$ into a zinc phosphating bath leads to faster reaction to form porous surface coatings with poor adhesion and corrosion resistance.

Evaluation of Corrosion Resistance Properties of Hexagonal Boron Nitride Based Polymer Composite Coatings for Carbon Steel in a Saline Environment

  • Alabdullah, Fadhel T.;Ali, C.;Mishra, Brajendra
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.41-52
    • /
    • 2022
  • Herein, we report polyvinyl butyral composites coatings containing various loadings of 72-h bath sonicated hexagonal boron nitride particles (5 ㎛) to enhance barrier properties of coatings. Barrier properties of coatings were determined in 3.5 wt% NaCl after different time periods of immersion via electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization test. Coatings containing sonicated hexagonal boron particles exhibited improved corrosion resistance for longer periods of immersion compared to neat coating. We also discussed effects of hexagonal boron nitride on healing properties of polyvinyl butyral. Coatings containing 1.0 wt% loading of sonicated hexagonal boron nitride showed improved long-term barrier properties than coatings with other compositions. The presence of hexagonal boron nitride also affected the healing properties of polyvinyl butyral coatings besides their barrier properties. Such improved barrier properties of composites coatings were attributed to the high aspect ratio, plate-like shape, and electrically insulated nature of the filler.

Role of chloride ions with Zwitterions and phosphate groups on the improvement of the passive film in alkaline environment (알칼리성 환경에서 부동태 피막 개선에 대한 양쪽성 이온 및 인산염 그룹을 갖는 염화물 이온의 역할)

  • Tran, Duc Thanh;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.43-44
    • /
    • 2022
  • In this study, the optimum amount of chloride ions is used to collaborate with hybrid corrosion inhibitor for carbon steel rebar treatment in simulated pore concrete (SCP) solution is discovered. The corrosion inhibition performance of hybrid inhibitors is carried on by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PP). The highest corrosion inhibition resistance is found in case of LP-C2 after 240 h exposure. Surface studies including scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to figure out the surface morphology of the steel rebar treated with hybrid inhibitors in order to collaborate well with electrochemical studies. Anodic type inhibition action was confirmed by potentiodynamic polarization study.

  • PDF

Investigation of the steel rebar corrosion using embeddable solid state reference electrode in marine environments (해양 환경에서 매립형 고체 기준 전극을 사용한 철근 부식 조사)

  • Subbiah, Karthick;Park, TaeJoon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.57-58
    • /
    • 2022
  • Reinforced concrete (RC) structures play a significant role in the construction industries. An embeddable solid-state reference electrode (ESSRE) was used to evaluate the corrosion status of steel rebar in the concrete of various cover thicknesses that exposed to the maritime environment (3.5 % NaCl) in this study. From the open circuit potential measurement (OCP), the passive state, the corrosion uncertainty, and the 90% probability of corrosion state of the steel rebars in the concrete were monitored by ESSRE. From the electrochemical impedance spectroscopy (EIS) method, severe corrosion was observed at the exposure period of 1510, 1847, 2350, and 3020 h for C10, C15, C20, and C30 concrete, respectively. The results confirm that the ESSRE can be useful to identify the corrosion occurrence and severe corrosion of steel rebar embedded in different cover depth concrete structures.

  • PDF