• Title/Summary/Keyword: Nutrients accumulation

Search Result 151, Processing Time 0.031 seconds

Assessment of the Wetland Soil Development in Constructed Wetlands using the Soil Properties of a Reference Wetland (기준습지 토양특성을 활용한 인공습지의 토양발달 평가)

  • Lee, Ja-Yeon;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Changes in wetland soil properties of two constructed wetlands after their constructions were compared to those of a natural wetland to determine if they could be used for the evaluation of the success of constructed wetlands and the assessment of their functions. One natural wetland as a reference wetland and two constructed wetlands(treatment wetland and experimental wetland) with different contaminant inflow characteristics were selected for this study. Major physicochemical properties of wetland soil such as soil texture, water content, pH, CEC(cation exchange capacity), organic matter content, total nitrogen, and available phosphorus were monitored to investigate the effects of inundation and accumulation of organic matters and nutrients on the wetland soil development. There was a clear difference in soil texture between the natural wetland and the constructed ones, with the high sand content in the constructed wetlands as compared to the high clay content in the natural one. Gradual increases of silt and clay contents over time were observed in the constructed wetlands. The soil of the natural wetland was higher in water content and organic matter but lower in pH than those of the constructed wetlands. The pH of the constructed wetlands reached near neutral ranges after initial increase. CEC and nutrient concentrations of the constructed wetlands seemed to be affected mainly by outside inflows of organic matter and contaminants. Concentrations of organic matter and nutrients decreased over time in the experimental wetland where surface and deep soils with different characteristics were mixed during its construction, suggesting that changes in soil properties during wetland constructions may affect the development of wetland soils or wetland biogeochemistry. This study showed that changes in physicochemical properties of soils in constructed wetlands could be used to assess the success of constructed wetlands and their functions, and also the importance of reference wetlands for the appropriate assessment.

Analysis of Commercial Organic Compost Manufactured with Livestock Manure (국내 유통중인 가축분퇴비의 품질 특성)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Park, Seong-Jin;Lee, Chang-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • The contents of total nitrogen(T-N), phosphate($T-P_2O_5$), and potash($T-K_2O$) are important factors to determine the application rate of the livestock compost to prevent nutrients accumulation and maintain their appropriate levels in arable lands. The concentrations of nutrient, organic matter, salt, water content, heavy metal in livestock compost in circulation were investigated with 659 samples from 2016 to 2017. In order to investigate the fluctuation nutrient contents of livestock composts with the same product name, 19 samples were collected and analyzed T-N, and $T-P_2O_5$, and $T-K_2O$ concentration during two years. The mean levels of T-N, $T-P_2O_5$, and $T-K_2O$ in livestock composts of from 2016 to 2017 were 1.73%, 1.88%, and 1.66%, respectively. The average contents of organic matter, water, and salt were 38.9%, 40.9%, and 1.2%, respectively. There were found that the maximum concentrations of Cr, Ni, Cu, and Zn in some livestock composts were exceeded the criteria of the official standard of commercial fertilizer. The maximum variation coefficient of T-N, $T-P_2O_5$ and $T-K_2O$ content of livestock composts was found to be 24%, 27%, and 50% on average, respectively. In order to manage the nutrients in agricultural soils, it will be reasonable that the error range of T-N and $T-P_2O_5$ content in livestock composts should be recommended to be 27% in mean as variation coefficient in case of displaying the nutrient element in liverstock compost.

Evaluation of Soil and Fertilizer Management Techniques Applied by Farmers in Forcing and Semi-forcing Cucumber Cultivation Facilities (오이 촉성재배와 반촉성재배 농가들의 토양 및 시비관리기술 평가)

  • Lee, Ju-Young;Jang, Byoung-Choon;Sung, Jwa-Kyung;Lee, Su-Yeon;Kim, Rog-Young;Lee, Ye-Jin;Park, Yang-Ho;Kang, Sung-Soo;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.983-991
    • /
    • 2012
  • These days, agricultural products cultivated in facilities occupy the highest percentage of agricultural output price. Specifically cucumbers have been one of the crops that farmers prefer to growing, because their prices were high. However, cucumber crop is sensitive to the soil and environments and it requires the exact crop management. In order to establish cultivation techniques for cucumbers, the current situation of cucumber cultivation was surveyed from ten cucumber farmlands; five farmlands of cucumber cultivation in forcing and five of semi-forcing practicing systems, respectably. The soil conditions were alluvial or valley in soil topology, moderately or poorly drainage in soil drainage classes, coarse loamy in soil texture family. Soil was managed with deep plowing combined with application of basal fertilizers such as compost, rice straw, oil cake, wood chip and chemical fertilizer. The whole soil was prepared in uniformly with rotary. Three major nutrients ($N-P_2O_5-K_2O$)of basal application were 815-464-529 kg $ha^{-1}$ in forcing and 197-135-151 kg $ha^{-1}$ in semi-forcing cultivation. Top dressing of fertilizer was supplied in fertigation system of macro and micro elements in 2~3 day interval with water irrigation. The average yields of cucumbers were $168t\;ha^{-1}$ with 381,000 thousand won $ha^{-1}$ in average gross profit (AGP) in forcing cultivation and $115t\;ha^{-1}$ with 177,000 thousand won $ha^{-1}$ in AGP in semi-forcing cultivation. Cucumber production during the winter season was considered to increase the gross profit because cucumber price tends to stay in high level during this time. The accumulation of soil chemicals like EC, available $P_2O_5$ and exchangeable cations could be controlled by rice straw application. The rice straw application increased soil temperature during the winter season, in exchange of soil air, and in extension of plant roots. In addition, the rice straw application somewhat affected decrease of salts accumulation.

Comparison of Nutrient Balance in a Reclaimed Tidal Upland between Chemical and Compost Fertilization for the Winter Green Barley Cultivation (간척농경지에서 비종에 따른 동계 청보리 재배 포장의 영양물질 수지 비교)

  • Song, In-Hong;Lee, Kyong-Do;Kim, Ji-Hye;Kang, Moon-Seong;Jang, Jeong-Ryeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • BACKGROUND: Along with the surplus rice production, introduction of upland crop cultivations into newly reclaimed tidal areas has gained public attentions in terms of farming diversification and farmers income increase. However, its impacts on the surroundings have not been well studied yet, especially associated with nutrient balance from reclaimed upland cultivation. The objective of this study was to investigate water and nutrient balance during winter barley cultivation as affected different fertilization methods. METHODS AND RESULTS: TN and TP balance for three different plots treated by livestock compost, chemical fertilizer, and no application were monitored during winter green barley cultivation (2010-2011) at the NICS Kyehwa experimental field in Jeonbuk, Korea. Nutrient content in soil and pore water near soil surface appeared to increase, while sub-soil layer remained similar with no fertilization plot. Livestock compost application appeared to increase organic matter content in surface soil compared to chemical fertilization. Crop yield was the greatest with livestock compost application (10.6 t/ha) followed by chemical fertilization (6.9 t/ha) and no application (1.8 t/ha). The nitrogen uptake rate was also greater with livestock compost (52.4%) than chemical fertilizer (48.1%). Phosphorus uptake rate was much smaller (about 7.0%) compared to nitrogen. Nutrient loss by surface and subsurface runoff seemed to be minimal primarily due to small rainfall amount during the winter season. Most of the remaining nutrients, particularly phosphate seemed to be stored in soil layer. Phosphate accumulation appeared to be more phenomenal in the plot applied by livestock compost with higher phosphorus content. CONCLUSION: This study demonstrated that livestock compost application to tidal upland may increase barley crop production and also improve soil fertility by supplying organic content. However, excessive phosphorus supply with livestock compost seems likely to cause a phosphate accumulation problem, unless the nitrogen-based fertilization practice is adjusted.

Heavy Metal and Amino Acid Contents of Soybean by Application of Sewage and Industrial Sludge (생활하수 및 산업폐수 슬러지 처리에 따른 콩의 중금속 및 아미노산 함량)

  • Moon, Kwang-Hyun;Kim, Jae-Young;Chang, Moon-Ik;Kim, Un-Sung;Kim, Seong-Jo;Baek, Seung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.268-277
    • /
    • 2013
  • This study investigates the effects of accumulated levels of heavy metals and nutrients of cultivated soybean plant tissues, after the continuous application of sewage sludge (SS) and industrial sludge (IS). SS and IS were applied to soybean plants at loading of 0, 11.25, 22.50, and 45.00 Mg/ha, and the contents of heavy metals (Cd, Pb, Ni, Cu, and Zn), proteins, and amino acids in the cultivated soybean plants were measured. The Cd content in the soybean was 0.02~0.05 mg/kg, which is within the safety level set in the standard, and that of Pb was 0.02~0.15 mg/kg, which is also within the safety level except for IS 45 Mg/ha. The soybean harvest quantity was higher in the treatment groups than the control group in the first year. However, in the second year, SS had lower harvest and IS had the same level or a decreasing tendency, compared with the control group. In the first year, the content of amino acid which followed handling of SS was increased in the sludge groups more than in the control group in the case of glutamate. However, the influence of continuous application was increased in the sludge groups in the case of amino acids of 12 types. In conclusions, the accumulation in soybean of heavy metals by sludge treatment is not a problem, but the decreased yields needs to be considered. In addition, the most appropriate level of sludge treatment was 11.25 Mg/ha.

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation (퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향)

  • Phonsuwan, Malinee;Lee, Min Ho;Moon, Byeong Eun;Kim, Young Bok;Kaewjampa, Naruemol;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.

The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction (방조제 체절이후 새만금호의 장기적인 수질변화)

  • Jeong, Yong Hoon;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.51-63
    • /
    • 2015
  • In order to investigation long-term variations of water qualities in the Saemangeum Salt-Water Lake formed after the sea-dike construction, the survey has carried out over 40 time from 2002 to 2010. The decreased salinity in surface water immediately after the dike construction has maintained on equal terms for years. After the dike construction, the early concentration of SPM in surface water has decreased but then it showed the tendency to move up and down due to the changes of water level in the lake. The elevated concentration of Chl-a in surface water initially after the dike construction was kept at the same conditions for years. The concentration of DIN in surface water has not changed before and shortly after the dike construction. However, the concentration of $NH_4-N$ in surface water has increased steadily after the dike construction. Consequently the concentration of DIN in the lake water after years has raised compared to pre-dike construction. The reduced concentration of DIP in surface water soon after the dike construction has increased after years as well as $NH_4-N$ due to the accumulation of organic matter to inside lake. Unlike with the unvaried $NO_3-N$, the concentration of DISi in surface water after the dike construction has immediately increased and maintained the enhanced level indicating the supply from other sources except the freshwater. Since the dike construction, the spatial characteristics of water quality was divided river sides and rest of the lake markedly. Stratification of river sides was more strong than the dike sides. In the warm seasons, hypoxia causing the release of nutrients and metals from sediment was observed downward about 1 m from surface of river sides. We strongly suggest to make some urgent measure to prevent low dissolved oxygen condition in the bottom layer of the river sides.

The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land (에너지작물 재배를 위한 간척지 토양의 토양복토재로써 하수슬러지 고화물의 이용효과)

  • An, Gi-Hong;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Bark, Surn-Teh;Kim, Jung-Kon;Yoon, Yong-Mi;Park, Kwang-Guen;Kim, Jang-Taeck
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.238-247
    • /
    • 2012
  • To determine the possibility of solidified se wage sludge for use as a soil cover material in reclaimed land, the growth of energy crops and soil chemical properties investigated in each experimental plots during 2 years (2010 and 2011). The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). Plant height, measured in the second year (2011), was highest in the Geodae 1 grown at plots treated with solidified sewage sludge. The growth of energy crops cultivated in both SS50 and SS100 were better than in ORL. The contents of organic matter (OM) and total nitrogen (T-N) at both SS50 and SS100 were considerably higher than that of the ORL over 2 years. However, the soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100 over 2 years. We consider that soil chemical and physical properties on reclaimed land used in this study could be improved by the application of solidified sewage sludge due to following reasons. Firstly, the application of solidified sewage sludge may provide soil nutrients on reclaimed land i.e. the growth of energy crops better than in ORL, resulted in more OM and T-N contents in SS50 and SS100. Secondly, the top layers mixed or covered with solidified sewage sludge on reclaimed land may be prevented the salinity accumulation due to capillary rise to surface soil, and improved the cultivation layer for effectively propagating the rhizomes of energy crops. Thus the solidified sewage sludge may be a great soil cover materials for cultivation of bioenergy crops in reclaimed land.

Responses of Root Growth Characters to Waterlogging in Soybean [Glycine max (L.) Merrill] (과습에 따른 콩 지하부 생육반응)

  • Lee, Jae-Eun;Kim, Hong-Sig;Kwon, Young-Up;Jung, Gun-Ho;Lee, Chun-Ki;Yun, Hong-Tai;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Stress from excess water is one of the most harmful limiting factor in soybean yield during the wet season under the climate conditions. Soybean is very sensitive to excess water compare to other crops. This experiment was carried out to identify the growth responses for establishing a screening system related to waterlogging tolerance in soybean from 2003 to 2004. The root dry weight accumulation rate of per day for 21 days after waterlogging at V5 stage was the highest in Pungsannamulkong (47~56% of control) and was the lowest in Jangyeobkong (26~27% of control). The nodules dry weight recovery rate was the highest in Pungsannamulkong (83~91% of control), while the lowest in Myungjunamulkong (48~66% of control). After waterlogging, recovery rate of roots was high, which increased the root/shoot ratio of Pungsannamulkong, which also produced significantly more adventitious roots than in Jangyeobkong. The percentage of adventitious roots fresh weight to the total roots fresh weight was the lowest in Myungjunamulkong (14%), while the highest in Pungsannamulkong (38%). This results implies that the water and nutrients absorbing ability of Pungsannamulkong is more higher than that of Myungjunamulkong during late growth period.

The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean (태안 남해포 갯벌 패류양식해역의 환경특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Song, Jae Hee
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 2013
  • To assess the effect of environmental factors on the sustainability of cultured production shellfish, we investigated the habitat characteristics of tidal flat (Namhae-po in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several site of tidal flat to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain size for research area of tidal flat were similar at the ratio of silt and clay in comparison with the other site of it. The C/N ratio was more than 5.0, reflecting the range arising from the mix of marine organism and organic matter. The C/S ratio (about 2.8) showed that survey area had anoxic or sub-anoxic bottom conditions. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. Adult surf clam (Mactra veneriformis) density was highest at St. 2 (middle part of the Namhae-po), on the other hand, surf clam spat density was highest at St. 3 (lower part of the Namhae-po). Heavy rain, terrigenous suspended clay with fresh water from neighboring agricultural land, and severe high air temperature during summer could be thought as detrimental causes of spat and adult mortality in Namhae-po tidal flat. We suggested that the growth of shellfish in the tidal flat was effected by the various environmental conditions, so an improvement in the cultured method was needed.