DOI QR코드

DOI QR Code

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation

퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향

  • Phonsuwan, Malinee (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Institute of Agriculture & Life Science)) ;
  • Lee, Min Ho (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Institute of Agriculture & Life Science)) ;
  • Moon, Byeong Eun (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Institute of Agriculture & Life Science)) ;
  • Kim, Young Bok (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Institute of Agriculture & Life Science)) ;
  • Kaewjampa, Naruemol (Dept. of Conservation, Kasetsart Univ.) ;
  • Yoon, Yong Cheol (Dept. of Agriculture Engineering, Gyeongsang National Univ. (Institute of Agriculture & Life Science)) ;
  • Kim, Hyeon Tae (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Institute of Agriculture & Life Science))
  • 마리네폰수완 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 이민호 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 문병은 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 김영복 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 나르몬 케우잠바 (콘켄대학교 식물과학과(농업자원)) ;
  • 윤용철 (경상대학교 지역환경기반공학과(농업생명과학연구원)) ;
  • 김현태 (경상대학교 생물산업기계공학과(농업생명과학연구원))
  • Received : 2016.09.21
  • Accepted : 2016.12.23
  • Published : 2016.12.31

Abstract

The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.

본 연구는 퇴비에 함유된 영양소 및 중금속 함량을 파악하고 상추 재배시 퇴비의 적정 시용 비율을 알아보고자 수행되었다. 실험을 위해 두가지 퇴비를 이용하였다. 첫 번째 퇴비는 미완숙 퇴비(CA)이며 두 번째 퇴비는 시중에서 판매되고 있는 완숙 퇴비(CB)이다. 각각의 퇴비는 인공토양을 0%, 25%, 50%, 75%로 혼합하여 사용하였다. 50%와 75%의 비율로 혼합한 CA의 pH는 각각 5.39, 5.50으로 측정되었으며 약 산성으로 나타났다. CA 및 CB를 75% 비율로 혼합할 경우, 총 탄소 함량은 각각 14.5%와 6.5%로 다른 비율의 퇴비에 비해 높았고 대조구에 비해 총 질소와 인 농도가 유의하게 증가하였다. 총 탄소함량은 CA퇴비를 인공토양에 75% 혼합한 실험구에서 가장 높게 나타났다. CA는 CB와 비교하여 퇴비화율, 질소, 인의 농도가 크게 증가하였다. CB 75% 혼합한 실험구에서 구리($128mg\;kg^{-1}$), 아연($260mg\;kg^{-1}$), 납($0.32mg\;kg^{-1}$), 카드뮴($0.48mg\;kg^{-1}$)의 함량은 다른 혼합구에 비해 가장 많은 증가하였다. 특히 비소는 CA퇴비를 25% 혼합한 실험구와 CB퇴비를 75%, 50% 혼합한 실험구에서 가장 높았다(6.69 and $6.28mg\;kg^{-1}$). CA실험구 중에서 상대적으로 낮은 염분 및 중금속 함량을 함유한 CA 25% 혼합한 실험구는 상추의 성장속도 및 엽면적 등이 CB에 비해 낮게 측정되어 최적의 성장조건은 아닌 것으로 사료된다. 따라서, CA를 사용하여 상추재배에 이용할 경우, 더 낮은 농도의 CA를 이용하는 것이 적당할 것으로 판단된다.

Keywords

References

  1. Alvarenga, P., C. Mourinha, M. Farto, T. Santos, P. Palma, and J. Sengo. 2015. Sewage sludge, Compost and other representative organic waste as agricultureal soil amendments: Benefits versus limiting factors. Waste Manage. 40, 44-52. https://doi.org/10.1016/j.wasman.2015.01.027
  2. Bernal, M.P., J.A. Alburquerque, and R. Moral. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 100, 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027
  3. Castro, E., P. Manas, and J. De las Heras. 2009. A comparison of the application of different waste product to a lettuce crop: Effect on plant and soil properties. Sci. Hortic. 123, 148-155. https://doi.org/10.1016/j.scienta.2009.08.013
  4. Courtney, R.G. and G.J. Mullen. 2008. Soil quality and barley growth as influenced by the land application of two compost types. J. of Bioresour. Technol. 99, 2913-2918. https://doi.org/10.1016/j.biortech.2007.06.034
  5. Inoue, Y., K. Yamaoka, K. Kimura, K. Sawai, and T. Arai. 2000. Effects of Low pH on the Induction of Root Hair Formation in Young Lettuce (Lacfuca sativa L. cv. Grand Rapids) Seedlings .J. plant Res. 113, 39-44. https://doi.org/10.1007/PL00013909
  6. Garcia-Gomez, A., M.P. Beranl, and A. Roig. 2002. Growth of ornamental plant in two composts prepared from agroindustrial wastes. Bioresour. Technol. 83, 81-87. https://doi.org/10.1016/S0960-8524(01)00211-5
  7. Jayasinghe, G.Y., I.D. Liyana, and Y. Tokashiki. 2010. Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative. Resour., Conserv. and Recycl. 54, 1412-1418. https://doi.org/10.1016/j.resconrec.2010.06.002
  8. Kim, K.Y., H.W. Kim, S.H. Han, E.J. Hwang, C.Y. Lee, and H.S. Shin. 2008. Effect of granular porous media on the composting of swine manure. Waste Manage. 28, 2336-2343. https://doi.org/10.1016/j.wasman.2007.10.015
  9. Kitson, R.E. and M.G. Mellen. 1944. Colorimentric determination of P as a molybdovanadato phosphoric acid. Ind. Eng. Chem. Anal. 16, 379-383. https://doi.org/10.1021/i560130a017
  10. Ko, H.J., K.Y. Kim, H.T. Kim, C.N. Kim, and M. Umeda. 2008. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage. 28, 813-820. https://doi.org/10.1016/j.wasman.2007.05.010
  11. Lucas, S. T., E. M. D. Angelo, and M. A. Williams. 2014 Improving soil structure by promoting fungal abundance with organic soil amendment. Appl. Soil Ecol. 75, 13-23. https://doi.org/10.1016/j.apsoil.2013.10.002
  12. Martinez-Fernandez, D., E. Arco-Lazaro, M.P. Bernal, and R. Clemente. 2014. Comparison of compost and humic fertiliser effect on growth and trace element accumulation of native plant species in a mine soil phytorestoration experiment. Ecol. Eng. 73, 588-597. https://doi.org/10.1016/j.ecoleng.2014.09.105
  13. National institute of agriculture science and technology (NIAST), 2005. Compost standard Notification No. 1 ., Suwan, Korea.
  14. Ostos, J.C., R. Lopez-Garrido, J.M. Murillo, and R. Lopez. 2008. Substitution of peat for municipal solid waste-and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrub Pistacia lentiscus L. Bioresource Technolo. 99, 1793-1800. https://doi.org/10.1016/j.biortech.2007.03.033
  15. Ouedraogo, E., A. Mando, and N.P. Zombre. 2001. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. and Environ. 84, 259-266. https://doi.org/10.1016/S0167-8809(00)00246-2
  16. Polprasert, C. 1989. Organic waste recycling 1st ed. Great Britain; Associated Publishing Services Ltd.
  17. Singh, R.P. and M. Agrawal. 2010.Variation in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol. and Environ. Saf.73, 632-641. https://doi.org/10.1016/j.ecoenv.2010.01.020
  18. Tambone, F., L. Terruzzi, B. Scaglia, and F. Adani. 2015. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties. Waste Manage. 35, 55-61. https://doi.org/10.1016/j.wasman.2014.10.014
  19. Wang, H., Y. Dong, Y. Yang, G.S. Toor, and X. Zhang. 2013. Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J. Environ. Sci. 25, 2435-2442. https://doi.org/10.1016/S1001-0742(13)60473-8