• Title/Summary/Keyword: Nutrient Input

Search Result 188, Processing Time 0.03 seconds

The effect of nanoemulsified methionine and cysteine on the in vitro expression of casein in bovine mammary epithelial cells

  • Kim, Tae-Il;Kim, Tae-Gyun;Lim, Dong-Hyun;Kim, Sang-Bum;Park, Seong-Min;Lim, Hyun-Joo;Kim, Hyun-Jong;Ki, Kwang-Seok;Kwon, Eung-Gi;Kim, Young-Jun;Mayakrishnan, Vijayakumar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.257-264
    • /
    • 2019
  • Objective: Dairy cattle nutrient requirement systems acknowledge amino acid (AAs) requirements in aggregate as metabolizable protein (MP) and assume fixed efficiencies of MP used for milk protein. Regulation of mammary protein synthesis may be associated with AA input and milk protein output. The aim of this study was to evaluate the effect of nanoemulsified methionine and cysteine on the in-vitro expression of milk protein (casein) in bovine mammary epithelial cells (MAC-T cells). Methods: Methionine and cysteine were nonionized using Lipoid S 75 by high-speed homogenizer. The nanoemulsified AA particle size and polydispersity index were determined by dynamic light scattering correlation spectroscopy using a high-performance particle sizer instrument. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the cytotoxicity effect of AAs with and without nanoionization at various concentrations (100 to $500{\mu}g/mL$) in mammary epithelial cells. MAC-T cells were subjected to 100% of free AA and nanoemulsified AA concentration in Dulbecco's modified Eagle medium/nutrient mixture F-12 (DMEM/F12) for the analysis of milk protein (casein) expression by the quantitative reverse transcription polymerase chain reaction method. Results: The AA-treated cells showed that cell viability tended to decrease (80%) in proportion to the concentration before nanogenesis, but cell viability increased as much as 90% after nanogenesis. The analysis of the expression of genetic markers related to milk protein indicated that; ${\alpha}_{s2}$-casein increased 2-fold, ${\kappa}$-casein increased 5-fold, and the amount of unchanged ${\beta}$-casein expression was nearly doubled in the nanoemulsified methionine-treated group when compared with the free-nanoemulsified methionine-supplemented group. On the contrary, the non-emulsified cysteine-administered group showed higher expression of genetic markers related to milk protein ${\alpha}_{s2}$-casein, ${\kappa}$-casein, and ${\beta}$-casein, but all the genetic markers related to milk protein decreased significantly after nanoemulsification. Conclusion: Detailed knowledge of factors, such nanogenesis of methionine, associated with increasing cysteine and decreasing production of genetic markers related to milk protein (casein) will help guide future recommendations to producers for maximizing milk yield with a high level of milk protein casein.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Seasonal Variations of Size-structured Phytoplankton in the Chunggye Bay (청계만 식물플랑크톤 크기구조의 계절적 변동)

  • Ji, Sung;Sin, Yong-Sik;Soh, Ho-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • Three embankments are located in the Chunggye Bay, each named as Changpo, Bokkil and Kuil and environmental changes are expected due to freshwater input. To investigate this phenomenon, three sample sites in front of each embankment gate were selected in Nov. 2006(autumn), Feb. 2007(winter), May. 2007(spring) and Aug. 2007(summer). At every point of embankment spot, large cells(micro-size, >$20\;{\mu}m$) of phytoplankton were turned out to be a major cause of algal bloom in Feb. 2007 and nano-size($2-20\;{\mu}m$) phytoplankton became dominant during rainy season. In rainy season, each point of embankment showed low salinity and transparency with higher ammonium and phosphorus concentrations than dry season. However, the number of phytoplankton has decreased and it is expected that freshwater influx has more influence on high turbidity and radical decrease of salinity than nutrient. According to the results of this study, therefore, nutrient could have more influence on growth of phytoplankton in dry season, but high turbidity and radical changes of salinity have more influence in rainy season.

Evaluation of Soil Organic Carbon of Upland Soil According to Fertilization and Agricultural Management Using DNDC Model (DNDC 모형을 이용한 시비와 영농관리에 따른 밭포장의 토양유기탄소 변동 평가)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • To mitigate the impacts of climate change on agricultural ecosystems, development of agricultural management for enhanced soil carbon sequestration is required. In this study, the effects of fertilizer types (chemical fertilizer and manure compost), cropping systems, and crop residue management on SOC(Soil Organic Carbon) sequestration were investigated. Summer corn and winter barley were cultivated on experimental plots under natural rainfall conditions for two years with chemical fertilizer and manure compost. Soil samples were collected conducted and analyzed for SOC for soil. To estimate long-term variation patterns of SOC, DNDC was run with the experimental data and the weather input parameters from 1981 to 2010. DNDC simulation demonstrated SOC reduction by chemical fertilizer treatment unless plant residues are returned; whereas compost treatments increased SOC under the same conditions and SOC increment was proportional to compost application rate. In addition, SOC further increased under corn-barley cropping system over single corn cropping due to more compost application. Regardless of nutrient input type, residue return increased SOC; however, the magnitude of SOC increase by residue return was lower than by compost application.

Annual Change and C:N:P ratio in Particulate Organic Matter in Chinhae Bay, Korea (한국진해만 입자유기물 함량과 C:N:P 비의 연변화)

  • LEE, PIL-YONG;KANG, CHANG-KEUN;PARK, JONG-SOO;PARK, JOO-SUCK
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1994
  • An investigation of the annual change and C:N:P ratio in particulate organic matter (POM) in Chinhae Bay, a semi-enclosed bay of the southern coast of Korean Peninsula, was carried out for a period of 12 months between January and December, 1993. The concentrations of POM have a broad range: 198∼4,416 ugC/l, 24∼792 ugN/l and 4.5∼69.0 ugP/l, Marked seasonal changes of POM, particularly particulate organic carbon (POC) and nitrogen (PON), were observed in the surface water. Generally, the concentration of POM peaks in summer. The C:N:P composition ratio of particulate organic matter, which is high in summer, also shows a seasonal change. The C:N assimilation ratio is constant at 6.53, which is consistent with the Redfield ratio. The significant linear relationship between POM and chlorophyll-a in the surface water during the survey period (except for January and February) and the C:N ratio suggest that the concentration of POM is controlled by phytoplankton biomass. POM peaks in summer, a period characterized by high freshwater input and the strong stratification, as a result of the intense proliferation of phytoplankton by a large amount of nutrient loading from the tributaries. On the other hand, the high C:P and N:P ratios in summer indicate that P is limited for phytoplankton growth owing to N-enrichment from a high input of freshwater with a high dissolved inorganic N:P ratio.

  • PDF

Chemical Characteristics of Precipitation in Quercus Forests in Korea and Japan

  • Kim, Min Sik;Takenaka, Chisato;Park, Ho Taek;Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.503-509
    • /
    • 2007
  • The major objective of this study was to analyze the difference of the chemical characteristics of acid deposition in Quercus forests in Korea and Japan. The pH values of rainfall at the experimental forest of Kangwon National University (KS site) were higher than those at the Foresta Hills in Japan (JP site), and all chemical contents of throughfall and stemflow were much higher than those of rainfall in Quercus forest stands at the KS and JP site. The pH values, $Ca^{2+}$, $NO_3{^-}$ and $SO{_4}^{2-}$ concentration of throughfall and stemflow at the KS site showed seasonal variation. While at the JP site, the same pattern was shown in the pH values of throughfall and stemflow, however, did not show any difference among seasons. Also, the annual input of all nutrients in these two contrasting forests varied seasonally. These results can be used to predict the amounts of air pollutant that are washed off and leached by the rainfall and Yellow Sand (Asian dust), including NOx and SOx acid pollutants transported easterly from China in the spring. Therefore, it is necessary to quantify the inputs of dry and wet deposition throughout a full year to gain a more complete understanding of the effects of acid deposition on the nutrient cycles in these forest ecosystems.

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

Identification of QTLs Associated with Physiological Nitrogen Use Efficiency in Rice

  • Cho, Young-Il;Jiang, Wenzhu;Chin, Joong-Hyoun;Piao, Zhongze;Cho, Yong-Gu;McCouch, Susan R.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • Demand for low-input sustainable crop cultivation is increasing to meet the need for environment-friendly agriculture. Consequently, developing genotypes with high nutrient use efficiency is one of the major objectives of crop breeding programs. This study was conducted to identify QTLs for traits associated with physiological nitrogen use efficiency (PNUE). A recombinant inbred population (DT-RILs) between Dasanbyeo (a tongil type rice, derived from an indica ${\times}$ japonica cross and similar to indica in its genetic make-up) and TR22183 (a Chinese japonica variety) consisting of 166 $F_8$ lines was developed and used for mapping. A frame map of 1,409 cM containing 113 SSR and 103 STS markers with an average interval of 6.5 cM between adjacent marker loci was constructed using the DT-RILs. The RILs were cultivated in ordinary-N ($N-P_2O_5-K_2O=100-80-80kg/ha$) and low-N ($N-P_2O_5-K_2O=50-80-80kg/ha$) (100 kg/ha) conditions. PNUE was positively correlated with the harvest index and grain yield in both conditions. Twenty single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were identified for the nitrogen concentration of grain, nitrogen concentration of straw, nitrogen content of shoot, harvest index, grain yield, straw yield and PNUE in both conditions. The phenotypic variance explained by these S-QTLs and E-QTLs ranged from 11.1 to 44.3% and from 16.0% to 63.6%, respectively. The total phenotypic variance explained by all the QTLs for each trait ranged from 35.8% to 71.3%, showing that the expression of PNUE and related characters depends signify- cantly upon genetic factors. Both S-QTLs and E-QTLs may be useful for marker-assisted selection (MAS) to develop higher PNUE genotypes.

A Study on Soil Environment in Highway Cutting Slope and Adjacent Natural Vegetation Area (고속도로 절토 비탈면과 인접 자연식생지의 토양 환경 비교 분석)

  • Park, Gwan-Soo;Jeon, Gi-Seong;Song, Ho-Kyung;Kim, Nam-Choon;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • This study was carried out to estimate the physical and chemical soil characteristics in highway cutting slope areas. The soil was sampled in cutting area and natural vegetation area that was located in the upper areas of the highway cutting slope. The average total soil depth, bulk density, and soil hardness were bad in the highway cutting slope sites. The sandy loam was the most soil texture in the study area. The concentration of soil organic matter and nitrogen were very low in all highway cutting areas. The concentration of exchangeable cations was similar between the highway cutting slope and the natural vegetation sites in each highway. The soil pH was higher in highway cutting slope areas than in natural vegetation sites. In conclusion, chemical and physical properties of soil were bad in the cutting slope than in the natural vegetation area because of the loss of soil by cutting of slope area and less organic matter input by less vegetation in the highway cutting slope area. We should employ possible method to reduce the loss of soil, and compost and fertilization treatment could help to increase soil nutrient content in the cutting slope area.

Application to the Water and Sediment Model for the Management of Water Quality in Eutrophicated Seto Inland Sea, Japan (부영양화된 뢰호내해의 수질관리를 위한 수ㆍ저질예측모델의 적용)

  • Lee In Cheol;Chang Sun-duck;Kim Jong Kyu;Ukita Masao
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.96-108
    • /
    • 1998
  • The management of water quality and fishery resources with a major environmental problem in eutrophic coastal sea is studied. The numerical experiments using the water-sediment quality model (WSQM) were carried out for the management of water quality at the Seto Inland Sea in Japan. The results of long-term water quality simulation showed responses of seawater quality to input loads to vary in different localities. A formula roughly forecasting water qualify to estimate the effect of loading abatement was proposed. The simulation for the improvement of seawater quality showed the abatements of nutrient loads such as total phosphorus (TP) and total nitrogen (TN) as well as organic loads such as chemical oxygen demand (COD) to be peformed in the eastern Seto Inland Sea from Bisan Seto to Osaka Bay. On the other hand, it is indicated that the increase of loading leads to the increase of primary production. while not straightly to the increase of fish production for the catch of fisheries.

  • PDF