Browse > Article

Seasonal Variations of Size-structured Phytoplankton in the Chunggye Bay  

Ji, Sung (Division of Ocean System Engineering, Mokpo National Maritime University)
Sin, Yong-Sik (Division of Ocean System Engineering, Mokpo National Maritime University)
Soh, Ho-Young (Division of Marine Technology, Chonnam National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.13, no.4, 2008 , pp. 333-341 More about this Journal
Abstract
Three embankments are located in the Chunggye Bay, each named as Changpo, Bokkil and Kuil and environmental changes are expected due to freshwater input. To investigate this phenomenon, three sample sites in front of each embankment gate were selected in Nov. 2006(autumn), Feb. 2007(winter), May. 2007(spring) and Aug. 2007(summer). At every point of embankment spot, large cells(micro-size, >$20\;{\mu}m$) of phytoplankton were turned out to be a major cause of algal bloom in Feb. 2007 and nano-size($2-20\;{\mu}m$) phytoplankton became dominant during rainy season. In rainy season, each point of embankment showed low salinity and transparency with higher ammonium and phosphorus concentrations than dry season. However, the number of phytoplankton has decreased and it is expected that freshwater influx has more influence on high turbidity and radical decrease of salinity than nutrient. According to the results of this study, therefore, nutrient could have more influence on growth of phytoplankton in dry season, but high turbidity and radical changes of salinity have more influence in rainy season.
Keywords
Phytoplankton; Size-structure; Changpo embankment; Bokkil embankment; Kuil embankment; Chunggye Bay;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 송태곤, 1997. 전남 무안군의 4개 소하천의 저서무척추동물 및 담수어류상. Bulletin of Institute of Littoral Environment. 14:27-34
2 Brook A.J. 1965. Planktonic Algae as indicators of lake types, with special reference to the desmidaceae. Limnol. Oceanogr. 10: 403-411   DOI   ScienceOn
3 Durbin E.G., R.W. Krawiec and T.J. Smayda, 1975. Seasonal studies on the relative importance of different size fractions of phytoplankton in Narragansett Bay(USA). Mar. Biol. 32: 271-287   DOI
4 Fugimoto, N. and R. Sudo, 1997. Nutrient-limited growth of Microcystis aerugimosa and Phormidium tenue and competiton under various N:P supply ratios and temperatures. Limnol. Oceanogr. 42: 250-256   DOI   ScienceOn
5 Gallegos, C.L., T.E. Jordan and D.L. Correl, 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timing, magnitude, and location of blooms. Limnol. Oceanogr. 37(4): 813-825   DOI   ScienceOn
6 Kirk J.T.O. 1994. Light and Photosynthesis in Aquatic Ecosystems. p.75-77. Cambridge University Press, Cambridge, England
7 Parsons T.R. and R.J. LeBrasseurn, 1970. The availability of food to different trophic levels in the marine food chain, pp. 325-343
8 Sin Y.S. and J.M. Kim, 2003. Relative importance of Bottom-up vs. Top-down controls on Size-structured Phytoplankton Dynamics in a Freshwater Ecosystem; I. Temporal and Spatial vatiations of size structure Korean J. Limnol. 36: 403-412
9 Steemann Nielsen E. and E.A. Jensen, 1957. Primary oceanic production the autotrophic production of organic matter in the ocean. Galathea Rep. 1: 49-136
10 Yentch C.S. and D.W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221-231
11 Welschemeyer and Lorenzen, 1985. Role of herbivory in controlling phytoplankton abundance: annual pigment budget for a temperate marine fjord. Mar. Biol. 90(1): 75-86   DOI
12 Kemp W.M. and W.R. Boynton, 1981. External and internal factors regulating metabolic roles of an estuarine benthic community. Oecol. 51: 19-27   DOI
13 McCarthy, J.J., W.R. Taylor and M.E. Loftus, 1974. Significance of nanoplankton in the Chesapeake Bay Estuary and problems associated with the measurement of nanoplankton productivity. Mar. Biol. 24: 7-16   DOI
14 Harper, D. 1992. Eutrophication of freshwater. Principles, problems and restoration. Champman and Hall, London, pp. 329
15 Malone T.C., L.H. Crocker, S.E. Pike and B.W. Wendler, 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Mar. Ecol. Prog. Ser. 48: 235-249   DOI
16 현봉길, 신용식, 박 철, 양성렬, 이영준, 2006. 아산만 식물플랑크톤 크기구조의 시공간적 변동. 한국환경생물지. 24(1): 7-18   과학기술학회마을
17 Goldman, J.C. and J.H. Ryther, 1976. Temperature-influenced species competiton in mass cultures of marine phytoplankton. Biotechnol. Bioeng. 18: 1125-1144   DOI
18 Hein, M., M.F. Pedersons and K. Sand-Jensen, 1995. Size-dependent nitrogen uptake in micro-and macroalgae. Mar. Ecol Prog. Ser. 118: 247-253   DOI
19 Fisher T.R., L.W. Harding, D.W. Jr., Stanley and L.G. Ward, 1988. Phytoplankton, nutrient and turbidity in the Chesapeake, Delaware and Hudson estuaries. Mar. Ecol Prog. Ser. 27: 61-93
20 Rythrer J.H. 1969. Photosynthesis and fish production in the sea. Sci. 166: 72-76   DOI
21 Bold H.C. and M.J. Wynne, 1985. Introduction to the algae. 2nd Ed. Prentice-Hall Inc. Englwood Cliffs, New Jersey, pp. 720
22 Malone T.C. 1971. The relative importance of nanoplankton and netplankton as primary producers in the California Current System. Fish. Bull 69: 799-820
23 Coffin B. Richard, Sharp and H. Jonathan, 1987. Microbial trophodynamics in the Delaware Estuary. Mar. Ecol Prog. Ser. 41: 253-266   DOI
24 이상현, 신용식, 양성렬, 박 철, 2005. 아산만 식물플랑크톤의 계절별 군집분포 특성 한국해양학회지. 27: 149-159
25 Wafer M.V.M., P.I. Le Corre and J.L. Birrien, 1983. Nutrients and primary production in permanently well-mixed temperate coastal water. Mar. Ecol. Prog. Ser. 17: 431-446
26 Boyer, J.P., R.R. christian and D.W. Stanley, 1993. Patterns phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Mar. Ecol Prog. Ser. 97: 287-297   DOI
27 Loftus M.E., D.V. Subba Rao and H.H. Seliger, 1972. Growth and dissipation of phytoplankton in Chesapeake Bay. I. Response to a large pulse of rainfall. Chesapeake Science 13: 282-99   DOI
28 Dodge J.D. 1975. The fine structure of algal cells. Academic Press, Inc. London, pp. 261
29 Lamont-Doberty Geological Observatory, 1979. Effects of 22-$\mu$m screens on size-frequency distributions of suspended particles and biomass estimates of phytoplankton size fractions. Limnol. Oceanogr. 24(5): 956-960   DOI   ScienceOn
30 Sundbaeck K., B. Joensseon, P. Nilsson and I. Lindstroem, 1990. Impact of accumulating drifting macroalgae on a shallow-water sediment system: An experimental study, Mar. Ecol Prog. Ser. 58(3): 261-274
31 Caraco N.F., J.J. Cole, P.A. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay, D.T. Fisher, 1997. Zebramussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecol. 78(2): 599-602
32 Yentsch C.S. and J.H. Ryther, 1959. Relative significance of the net phytoplankton and nanoplankton in the waters of Vineyard Sound. J. Cons. Cons. Int. Explor. Mer. 24: 231-238   DOI
33 심재형, 1994. 한국동식물도감 제34편 식물편 해양식물플랑크톤
34 최광현, 황순진, 김호섭, 한명수, 2003. 팔당호 식물플랑크톤의 제한영양염과 성장률의 경시적 변화. 한국육수학회지. 26(2):139-149
35 Smith, V.H, 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Sci. 221: 669-671   DOI   ScienceOn
36 Marshcall, H.G. ajd W.A. Raymond, 1988. Spatial and temporal diatom assemblages and other phytoplankton within the lower Chespeake Bay, USA. Diatom symposium
37 Watanabe T., 1962. On the Biotic. Index of Water Pollution based upon the species Number of Bacillariophyceae in the Tokoro River in Hokkaido(in Japanese). Japan J. Ecol. 12: 216-222
38 박경양, 1994. 복길 간척지 주변 해역의 식물플랑크톤의 군집에 관한 연구. Bulletin of Institute of Littoral Environment 11:81-90
39 양성렬, 송환석, 문창호, 권기영, 양한섭, 2001. 낙동강 하구역의 담수유입에 따른 해양환경 및 일차생산력 변화. 한국조류학회지. 16(2): 165-177
40 Hellawell J.M. 1986. Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science Publishers, pp. 546
41 신용식, 서호영, 현봉길, 2005. 해수층의 염분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향. 한국해양학회지. 10(2): 113-123   과학기술학회마을
42 Carpenter S.R., J.F. Kitchell, J.R.Hodgson, P.A. Cochran, J.J. Elser, M.M. Elser, D.M Lodge, X. Kretchmer., X. He, C.N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecol. 68: 1863-1876   DOI   ScienceOn
43 Chapman V.J. 1968. The algae. Macmillan London, Melbourne, Toronto St Martis Press, New York, pp. 472
44 Walsh J.J. 1976. Herbivory as a factor in patterns of nutrient utilization in the sea. Limnol. Oceanogr. 21: 1-13   DOI   ScienceOn
45 Pennock, J.R. 1985. Chlorophyll distributions in the Delaware Estuary: Regulation by light-limitations. Mar. Ecol Prog. Ser. 21: 711-725
46 Amstrong R.A. 1994. Grazing limitation and nutrient limitation in marine ecosystems: steady state solution of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39(3): 597-608   DOI   ScienceOn
47 Parsons T.T., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Peramon Press, New York, pp. 22-25
48 양은진, 최중기, 2003. 경기만 수역에서 미세생물 군집의 계절적 변동 연구 ll. 미소형 및 소형 동물플랑크톤. 한국해양학회지. 8: 78-93
49 Boynton W.R., W.M. Kemp and C.W. Keefe, 1982. A comparitive analysis of nutrients and other factors influencing estuarine phytoplankton production, in. Estuarine Comparisons, edited by V. Kennedy, Academic Press, New York, pp. 69-90
50 Malone T.C. and M.B. Chervin, 1979. The production and fate of phytoplankton size fraction in the plume of Hudson river, New York Bight. Limnol. Oceanogr. 24: 683-696   DOI   ScienceOn
51 Anderson G.C. 1965. Fractionation of phytoplankton communities off the Washington and Oregon coasts. Limnol. Oceanogr. 10:477-480   DOI   ScienceOn
52 Cloren J.E., A.E. Alpine, B.E. cole, R.L.J. Wong, J.F. Arthur and M.D. Ball, 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay Estuary. Mar. Ecol Prog. Ser. 16: 415-429
53 Kivi K., S. Kaitala, H. Kuosa, J. Kuparinen. E. Leskinen, R. Lignell, B. Marcussen and T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38(5): 893-905   DOI   ScienceOn