• Title/Summary/Keyword: Nusselt number

Search Result 583, Processing Time 0.033 seconds

Natural Free Convection of Air in a Vertical Open Tube With Uniform Heat Flux and Temperature (일정 열류속 및 온도조건하의 수직관내에서 공기의 자연대류 열전달 연구)

  • Son, Byung-Jin;Kang, Hee-Yung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 1983
  • The natural free convection in a vertical tube with uniform heat flux and temperature has been studied by the theoretical analysis is of governing equations and experimental measurements. In order to determine the Characteristics of Convective heat transfer in the tube, a dimensionless Rayleigh number is introduced. The relationship between Nusselt and Rayleigh number is compared with the numerical analysis of finite difference method and experiment. Nusselt number obtained from the experimental measurements are in a good agreement with the calculated values, and the relationship equations between Nusselt and Rayleigh number are obtained.

  • PDF

Measurement of the local heat transfer coefficient on a convex hemispherical surface with round oblique impinging jet (볼록한 표면위에 분사되는 원형경사충돌제트의 국소열전달계수 측정에 관한 연구)

  • 최형철;이세균;이상훈;임경빈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.846-854
    • /
    • 1999
  • Measurements of the local heat transfer coefficients were made on a hemispherically convex surface with a round oblique impinging jet. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23000 and the nozzle-to-surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was $\alpha$=$0^{\circ}\; 15^{\circ}\;30^{\circ}C\; and \;40^{\circ}C$. In the experiment, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit Secondary maxima at $0^{\circ}C\re $\alpha$\re 15^{\circ}C, L/d\le6$ for X/d<0(upstream) and at $0^{\circ}C\re $\alpha$40^{\circ}C,\;L/d\le4\;and\; at\; 30^{\circ}C\re $\alpha$$\leq$40^{\circ}C,\;L/d\le 6 $for X/d>0(downstream). The secondary maxima occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. The Y-axis Nusselt number distributions exhibit secondary maxima at Y/d=$\pm$2 for $0^{\circ}C\le a\le30^{\circ}C\; and\; L/d\le4, and \;for\;$\alpha$=40^{\circ}C$and L/d=2. The displacement of the maximum Nusselt number from the stagnation point increases as the jet angle increases or the nozzle-to-surface distance decreases and the maximum distance is about 0.67 times of the nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

  • PDF

An Experimental Study on Natural Convection from a Conducting Tube with Two Axial Fins to a Surrounding Cylinder (두개의 축방향핀을 가진 전도관과 원통사이의 자연대류에 관한 실험적 연구)

  • Ahn, C.R.;Chung, T.H;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.26-33
    • /
    • 1991
  • An experimental study has been performed on the heat transfer by the natural convection from a conducting tube with two axial fins to a surrounding cylinder. In case of vertical fins, the maximum local Nusselt number of conducting tube appears at ${\theta}{\fallingdotseq}145^{\circ}$ and that of outer cylinder appears at ${\theta}=0^{\circ}$, for $l_F=0.3$. In case of horizontal fins, the maximum local Nusselt number of conducting tube appears at ${\theta}=180^{\circ}$ and that of outer cylinder appears at ${\theta}=0^{\circ}$. The local Nusselt number of the upper fin and the downward fin shows negative values for $l_F=1.0$. The local Nusselt number of the lower fin and the downward fin shows higher values than that of the upper fin and the upward fin. The mean Nusselt number of conducting tube in case of vertical fins are increased in order of $l_F=0.6$, 0.3, 1.0 and 0.0, but in case of horizontal fins, in order of $l_F=1.0$, 0.6, 0.3, and 0.0. The mean Nusselt number of outer cylinder in case of vertical fins are increased in order of $l_F=1.0$, 0.0, 0.3 and 0.6, but in case of horizontal fins, in order of $l_F=0.6$, 1.0, 0.3, and 0.0.

  • PDF

A study on the local heat transfer in rectangular impinging water jet cooling system (장방형 충돌수분류 냉각계의 국소열전달에 관한 연구)

  • Lee, Jong-Su;Eom, Gi-Chan;Choe, Guk-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1395-1405
    • /
    • 1996
  • The purpose of this experimental research is to investigate the local heat transfer characteristics in the upward free water jet impinged on a downward flat plate of uniform heat flux. The inner shape of rectangular nozzle used was sine curve type and its contraction ratio of inlet to outlet area was five. Experimental parameters considered were Reynolds number, nozzle exit-flat plate distance, and level of supplementary water. Local Nusselt number was influenced by Reynolds number, Prandtl number, supplementary water level, and distance between the nozzle exit and flat plate. Within the impingement region, the Nusselt number has a maximum value on the nozzle center axis and decreases monotonically outward from center. Outside of the impingement region, on the other hand, the Nusselt number has a secondary peak near the position where the distance from nozzle center reaches four times the nozzle width. However if nozzle exit velocity exceeds 6.2 m/s, the secondary peak appears also in the impingement region. The empirical equation for the stagnation heat transfer is a function of Prandtl, Reynolds, and axial distance from the nozzle exit. The optimum level of supplementary water to augment the heat transfer rate at stagnation point was found to be twice the nozzle width.

Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

  • Mohseni, Mehdi Moayed;Rashidi, Fariborz;Movagar, Mohammad Reza Khorsand
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2015
  • Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.

A new formulation for unsteady heat transfer of oscillatory flow in a circular tube (원관내 왕복유동에서 비정상 열전달 관계식의 공식화)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2953-2964
    • /
    • 1996
  • Heat Transfer with periodic fluctuation of fluid temperature caused by oscillatory flow or compression expansion can be out of phase with balk fluid-wall temperature difference. Newton's law of convection is inadequate to describe this phenomenon. In order to solve this problem the concept of the complex Nusselt number has been introduced by severla researchers. The complex Nusselt number expresses out of phase excellently while the first harmonic is dominant in the variations of both fluid-wall temperature difference and heat flux. However, in the case of oscillatory flow with non-linear wall temperature distribution, the complex Nusselt number is not appropriate to predict the heat transfer phenomena since the higher order harmonic components appear in periodic temperature variation. Analytic solutions to the heat transfer with an sinusoidal well temperature distribution were obtained to investagate the effect of non-linear wall temperature distribution. A new formula considering the thermal boundary layer was suggested based on the solutions. A comparison was also made with the complex Nusselt number. It was verified that the new formula describes well the heat transfer of oscillating flow even if the first harmonic component is not dominant in the fluid-wall temperature difference.

Natural Convection in the Annulus between a Horizontal Conducting Tube and a Cylinder with Spacers (수평전도관(水平傳導管)과 원통(圓筒)사이에 격판(隔板)을 가진 환상공간(環狀空間)에서의 자연대류(自然對流))

  • Lee, Sang-Hoon;Lee, Bum-Chul;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.86-97
    • /
    • 1987
  • Natural convection in the annulus between a horizontal conducting tube and a cylinder with spacers has been studied by 2-dimensional numerical method with finite difference techniques. The effects of Rayleigh number, conductivities of conducting tube and spacer, and position of spacers were studied analytically. In case of vertical spacers, the maximum local Nusselt number appears at ${\theta}{\approx}50^{\circ}$ in a conducting tube and ${\theta}{\approx}30^{\circ}$ in an outer cylinder, The local Nusselt numbers show positive values on the lower spacer, but negative values on the surface of the upper spacer. In case of horizontal spacers, the flow over the spacer is more active than that of under the spacer as the Rayleigh number increases. The maximum local Nusselt appeares at ${\theta}=180^{\circ}$ in a conducting tube and at ${\theta}=0^{\circ}$ in an outer cylinder. The local Nusselt numbers show positive values on the upward surface, but negative values on the downward surface of spacer. As the dimensionless conductivity increases, the mean Nusselt number remarkably increases at $K_w/K_f<48$ and show almost even at $K_w/K_f{\ge}48$. The mean Nusselt number of a conducting tube with vertical spacers is 5.12 percent less and with horizontal spacers is 11.33 percent less than that of a conducting tube without spacer at $Ra=10^4$, Pr = 0.7 and $K_w/K_f=48$.

  • PDF

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

Effects of Number of Heating Walls on Heat Transfer in the Rough Square Channel with Twisted Tape (테이프가 있는 거친 사각채널에서 가열벽면의 수가 열전달에 미치는 효과)

  • Ahn, S.W.;Kim, M.H.;Bae, S.T.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.17-22
    • /
    • 2006
  • Surface modifications like rib-roughening and displaced insert devices like the twisted tape are commonly used in applications such as compact heat exchangers and cooling systems. In this paper, regionally averaged heat transfer distributions in square channels with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. Each wall of the square channel is composed of isolated aluminum sections. Regionally averaged Nusselt number and channel averaged Nusselt number in turbulent air flows are presented for Reynold numbers from 8,900 to 29,000. We have obtained the following conclusions from the experimental study: 1) The local Nusselt number in the two-sided heated case is higher than that in the four-sided heated condition. 2) In the 4 heating wall channel with twisted tape inserts, Nusselt number based on bottom wall temperature is enhanced by 1.2 - 1.6 times if adding the axial interrupted ribs on the bottom wall only. 3) The twisted tape with interrupted ribs under the two-sided heating condition produces the highest heat transfer coefficient.

  • PDF

Impingement Heat Transfer Within a Row of Submerged Circular Water Jets (1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구)

  • Ohm, Ki-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.