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Abstract − Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus

model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed con-

ditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls.

Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of

elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt

number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By

increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall

temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat over-

comes the heat which is removed at the walls, and fluid heats up longitudinally. 
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1. Introduction

Heat transfer in the annulus has practical importance in some engi-

neering applications such as annular heat exchangers, drilling opera-

tions, polymer and plastic extrusion and food industries. For example,

in extrusion processes the knowledge of temperature distribution and

rate of heat transfer is very important for quality control of the final

product and avoiding the appearance of hot spots. These hot spots

tend to occur because the low thermal conductivity of polymers has

significant influence on non-uniformity of temperature variations.

Shah and London [1] obtained an analytical solution for forced

convection of a Newtonian fluid in annular flow without consider-

ing viscous dissipation for different boundary conditions. Coelho

and Pinho [2] investigated this problem considering viscous dissipa-

tion for the imposed boundary conditions of flux and temperature at

the walls. Manglik and Fang [3] and Fang et al. [4] studied forced

convection for Newtonian and non-Newtonian fluids in the concen-

tric and eccentric annulus by using numerical methods and without

viscous dissipation. Few other studies have also been carried out for

Non Newtonian fluids in the concentric annulus without considering

viscous dissipation [5-8]. Jambel et al. [9] studied the Graetz prob-

lem for power law model fluid, including the effect of viscous dissi-

pation and axial conduction. Generally speaking, research on heat

transfer of viscoelastic fluid is scant. An analytical solution has been

derived for forced convection heat transfer of sPTT viscoelastic fluid

in pipe and channel with constant flux boundary conditions at the

walls and including viscous dissipation effect by Pinho and oliveira

[10]. Coelho et al. [11] investigated the same problem with constant

temperature boundary conditions. Hashemabadi et al. [12,13] derived

an exact solution for heat transfer of sPTT model between parallel

plates accounting the effect of viscous dissipation. In the aforemen-

tioned study, one of the plates was stationary and was subjected to a

constant heat flux and constant temperature. The other plate moved

with constant velocity and was insulated. Coelho et al. [14] numeri-

cally solved the Graetz problem inside pipe and channel in the pres-

ence of viscous dissipation with sPTT model for both constant heat

flux and constant temperature boundary conditions at the walls and

fixed inlet temperature. Oliveira et al. [15], in a similar research,

studied this problem for FENE-P model by employing a semi-analyt-

ical method. Convective heat transfer of viscoelastic fluid inside a con-

centric annulus for axial flow was studied analytically by Pinho and

Coelho [16] using sPTT model. Their study includes the effect of

wall heating and viscous dissipation for both constant wall heat flux

and constant wall temperature boundary conditions.

Khatibi et al. [17] presented a theoretical analysis for a Giesekus

viscoelastic fluid in pipe and channel. Their study included the effect

of viscous dissipation, and the boundary condition was constant heat

flux at the wall. 

The present study is an analytical solution of forced convection

heat transfer for axial annular flow of a Giesekus viscoelastic fluid.

The governing equations are simplified and solved using both iso-

thermal and isoflux boundary conditions in the presence of viscous

dissipation. Subsequently, effects of elasticity, mobility parameter
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and viscous dissipation on the temperature distribution and Nusselt

number are discussed for both heating and cooling of the walls. The

details of this model have been presented by Giesekus [18,19].

2. Governing Equation

The problem is considered to be steady, laminar and fully devel-

oped both thermally and hydrodynamically. The no-slip condition

exists at the walls. Axial heat conduction is neglected compared to

the heat transfer in radial direction from the order of magnitude anal-

ysis [20], but the effect of viscous dissipation is included due to high

viscosity of viscoelastic fluids and large velocity gradients which

exist in industrial flows. Thermophysical properties of fluid are taken as

constant and no dependence on temperature is considered, because it

may be assumed that temperature variations will not be high enough

to impose significant changes in fluid properties.

The annulus is shown schematically in Fig. 1. Ri and Ro are inner

and outer cylinder radiuses, respectively. The annular gap is defined

as δ=Ro-Ri. and k is the radius ratio (Ri/Ro).

The Giesekus constitutive equation (without retardation time) is as

follows:

(1)

where

(2)

(3)

(4)

where τ is the stress tensor; η and λ are the model parameters

representing zero shear viscosity and zero shear relaxation time,

respectively [19]. The parameter α in Eq. 1 is the mobility factor

and the term containing α in the constitutive equation is attributed

to anisotropic Brownian motion and/or anisotropic hydrodynamic

drag on the constituent polymer molecules [21]; it is required that

0≤α≤1 as discussed in [18].

The hydrodynamic solution for this flow was derived in a previ-

ous study by the authors [22]. Equations 5, 6, 7 are shear rate, shear

stress and velocity profile, respectively. 

(5)

(6)

(7)

where

      

De is the Deborah number and is defined as (De = λU/δ), which is

related to the level of elasticity, ψ is the dimensionless group for pres-

sure gradient and Rm
* refers to the radius where the velocity is maxi-

mum or .

The steady state energy equation in concentric annulus for axial

flow with viscous dissipation, constant thermophysical properties and

negligible axial heat conduction can be represented by the following

equation:

(8)

where k, ρ and cp are thermal conductivity, density and specific

heat capacity of the fluid, respectively. T is the temperature and

Φ is the dissipation function, which includes only the shear stress

and shear rate for this flow.

(9)

Two types of boundary conditions are considered for the energy

equation:

1. Constant heat fluxes at the walls:

(10a)

(10b)

2. Constant temperatures at the walls:

(11a)

(11b)
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3. Analytical solution

3-1. Constant heat flux boundary conditions

The following relation holds for the thermally fully developed

flow [23]:

(12)

For the special case of constant wall heat flux, Eq. 12 reduces to:

(13)

Tw and Tb are wall and bulk temperatures, respectively. 

Applying an energy balance over an infinitesimal element of fluid,

dz, the following equation is obtained for fluid bulk temperature gra-

dient in axial direction.

(14)

By combining Eqs. (8), (13) and (14) and employing dimension-

less terms, the following equation is obtained.

(15)

where

(16a)

(16b)

Details regarding X are presented in the Appendix. 

The dimensionless terms are as follows:

  

U is the average velocity over cross-section of the annulus.

Θ is dimensionless temperature and Br is the dimensionless Brink-

man number, which is a measure of importance of the viscous dissi-

pation term.

(17)

(18)

 is the perimeter-averaged wall heat flux and is defined as fol-

lows:

(19)

where ϕ is the ratio of outer and inner wall heat fluxes, ϕ = qo/qi.

Dimensionless thermal boundary conditions will be as follows:

(20a)

(20b)

Dimensionless temperature profile (Θ) can be obtained by inte-

grating Eq. 15.

(21)

(22a)

(22b)

Mathematical expressions for  and  are presented in the Appendix.

Since both boundary conditions are of second type, determination

of C
2
 value is not possible directly. Hence, C

2
 is eliminated from Eq.

21 by subtracting dimensionless wall temperatures (Θi and Θo) from

dimensionless temperature profile (Θ) as shown below.

(23a)

(23b)

C1 can now be obtained by applying the dimensionless boundary

conditions (Eqs. 20a and 20b) as follows:

(24a)

or

(24b)

Mathematical expressions for d /dr* and d /dr* are reported in

the Appendix.

Dimensionless wall temperatures are determined by using the

bulk temperature definition.

(25)

By substitution of temperature (T) from Eq. 17 into Eq. 25 and

applying some mathematical manipulation, the following expres-

sions for dimensionless wall temperatures are obtained:

(26a)

(26b)
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the Gauss-Kronrod numerical method was used to determine these

values. The convective heat transfer from walls to the fluid is

quantified by Nusselt number at inner (Nui) and outer walls (Nuo).

Based on the hydraulic diameter (DH=2δ), the Nusselt number is

defined as (Nu=2δh/k). The heat transfer coefficient (h) in the walls

is obtained from (qw=h(Tw-Tb)). By using dimensionless tempera-

ture definition (Eq. 17), the Nusselt number becomes (Nu=qw/qoΘw)

and after substituting qo from Eq. 19, the following expressions

are obtained for inner and outer Nusselt numbers.

(27a)

(27b)

3-2. Constant wall temperature boundary conditions

Two normalized temperatures are defined for different and identi-

cal temperatures in the walls.

when (28a)

when (28b)

Viscoelastic fluids usually have high viscosity and therefore low

Reynolds number such that the advection term (u ∂T/∂z) in the

energy equation can be neglected.

Substituting dimensionless terms in Eq. 8, results in the following

equation:

(29)

The boundary conditions and corresponding Brinkman numbers

are listed below:

(1) 

at (30a)

at (30b)

(31)

(2) 

at (32a)

at (32b)

(33)

where Tin is the inlet temperature.

By integrating Eq. 29 the dimensionless temperature profile will

be as follows:

(34)

C
1
 and C

2
 can be obtained by using Eqs. 30 for different wall tem-

perature boundary conditions and Eqs. 32 for identical wall tem-

perature boundary conditions. 

Nusselt numbers for the two walls are derived as follows:

(1) 
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(35b)

(2) 
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 is dimensionless bulk temperature which is determined as fol-

lows:

(37)

The same commercial software that has been mentioned in sec-

tion 3.1 was employed to obtain Tb
*.

4. Validation

If α and De in the Giesekus equation are set as zero, the model will

become Newtonian. Therefore, it is expected that by choosing very

small values for α and De, the results obtained for viscoelastic fluid

will be similar to those of a Newtonian fluid. In this way, one can

verify the accuracy of obtained equations for viscoelastic fluid.

Tables 1 and 2 compare Nui values obtained from Coelho and
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Table 1. Comparison of Nu
i
 for Newtonian and Viscoelastic fluids

from current study and [2] for constant heat flux boundary

conditions at ϕ=1

Br
Coelho and Pinho 

Newtonian

This Work

Newtonian α=0.05 De=0.01

0 13.1109 13.1109 13.112

0.1 6.49568 6.49567 6.49703

0.5 2.15215 2.15214 2.15277

1 1.17229 1.17229 1.17265

2 0.613575 0.613574 0.61377

5 0.252521 0.25252 0.252603
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fluid and viscoelastic fluid with α=0.05 and De=0.01 for constant

fluxes and constant temperatures at the walls, respectively, with vari-

ous Br values. Results confirm the accuracy of obtained results in

this study.

5. Results and Discussion

5-1. Constant heat flux boundary conditions 

In the presence of viscous dissipation ( ), results show dif-

ferent behavior for heating (Br>0) or cooling (Br<0) processes, but

in the absence of viscous dissipation (Br = 0), results are indepen-

dent of heating or cooling. 

Although the solution presented in this study is applicable for all

values of ϕ, only three different situations corresponding to ϕ=0.001,

ϕ =1, ϕ=1000 are chosen for analysis.

• ϕ=0.001, in this case, the outer wall heat flux is much lower than

the heat flux at the inner wall and, therefore, fluid thermal behavior is

similar to that of an insulated outer wall.

• ϕ=1000 is opposite of the previous case. The outer wall heat flux

is much higher than the inner wall heat flux and the fluid thermal

behavior is similar to an insulated inner wall’s.

• ϕ=1, in this case, heat fluxes at both walls are equally important.

5-1-1. Wall heating

Fig. 2 shows the effect of Brinkman number and fluid elasticity on

the inner wall Nusselt number for the three selected ϕ values. It is

seen that, by increasing Deborah number the Nusselt increases for

the following reasons:

1. By increasing fluid elasticity level, the velocity profile gradient

as well as fluid flow rate increase adjacent to the walls [21], and

therefore, resistance to heat transfer from walls to fluid decreases. 

2. Due to fluid shear-thinning behavior, when Deborah number

increases, the internal heat produced by fluid viscosity decreases.

Thus, the difference between wall temperature and fluid bulk tem-

perature decreases, and according to the Nusselt number and dimen-

sionless temperature expressions (Eqs. 27 and 17), the Nusselt number

increases.

Fig. 2 also shows noticeable effects of viscous dissipation on con-

vective heat transfer. The Nusselt number decreases when Brinkman

number increases, because by increasing Brinkman the inside heat

generation by viscous dissipation increases. This behavior is stron-

ger near the walls and is expected because, according to the viscous

dissipation function (Eq. 9), both shear stress and velocity gradient

attain their maximum values adjacent the walls. Therefore, the dif-

ference between wall temperature and bulk temperature increases

and as a result the Nusselt number decreases. The trend of Nusselt

number is different for ϕ=1000 (Fig. 2c). In this case, Nusselt is neg-

ative for low Brinkman numbers, while it is positive for high Brink-

man numbers with a singularity in the Nusselt curve. Thus, at low

Brinkman numbers the inner wall temperature is lower than the bulk

temperature, which is due to insulating circumstances at the inner

wall, and therefore, Nusselt becomes negative. But, by increasing

Brinkman due to the higher heat generation near the wall, the differ-

ence between bulk temperature and wall temperature reduces until it

tends to zero, and as a result Nusselt number approaches infinity. If

the Brinkman number increases even more, the inner wall temperature

will be higher than bulk temperature and as a result Nusselt becomes

positive.

Effects of Deborah number and mobility factor (α) on the inner

wall Nusselt number are shown in Fig. 3, for different values of

Brinkman numbers. The elasticity level of fluid is directly propor-

tional to the value of mobility factor. This is because the mobility

factor can be indirectly related to the concentration of the polymer:

i.e., α=0 represents dilute solutions, while α=0.5 represents high

concentrated solutions [24]. Hence, the effect of α on heat transfer is

Br 0≠

Table 2. Comparison of Nu
i
 for Newtonian and Viscoelastic fluids

from current study and [2] for constant temperature boundary

conditions and T
i 
≠T

o

Br
Coelho and Pinho 

Newtonian

This Work

Newtonian α=0.05 De=0.01

0 4.88897 4.88896 4.888

0.1 6.59769 6.59771 6.59735

0.5 10.9107 10.9109 10.9102

1 13.6866 13.6868 13.6863

2 16.3216 16.3219 16.322

5 18.8263 18.8266 18.8277

Fig. 2. Variation of Nu
i
 with positive Br and De for α=0.1, κ=0.5 (a) ϕ=0.001 (b) ϕ=1 (c) ϕ=1000.
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similar to the effect of De. This is evident from Fig. 3.

According to Fig. 4a and Fig. 4b, by increasing De and α, i.e.,

higher elasticity, the difference between wall temperature and fluid

temperature decreases, which is due to having higher heat transfer at

high elasticity (see Fig. 2 and Fig. 3). By increasing Br, the difference

between wall temperature and fluid temperature increases (Fig. 4c),

which has already been discussed.

Also, the behavior of the outer wall Nusselt number is similar to

the behavior of inner wall Nusselt number but for reversed heat flux

ratios: Nu
o varies monotonically for ϕ=1000 and exhibits singularities

for ϕ=0.001, and at ϕ=1, both Nusselt numbers show similar behavior.

5-1-2. Wall cooling

Wall cooling (qo<0) is applied to reduce the bulk temperature of

fluid. In this process viscous dissipation plays a more important role

than it does in the heating process, and the strength of viscous dissi-

pation might change the overall heat balance. For small absolute val-

ues of Brinkman number, negative heat flux in the walls reduces the

bulk temperature of fluid in the axial direction (∂T/∂Z<0), but as the

absolute Brinkman number becomes larger than a critical value, the

internal heat produced by viscous dissipation overcomes the effect of

wall cooling and fluid starts to warm up itself (∂T/∂Z>0). This criti-

cal value is called the first critical Brinkman number (Br1), and is

determined by putting Eq. 14 equal to zero.

(38)

Fig. 5 shows the effect of Deborah number and mobility factor

on the first critical Brinkman number. It is seen that, by increas-

ing De and α, absolute value of Br1 increases, which means that

cooling range of fluid is being extended. So, by increasing fluid

elasticity there is no need to impose large heat fluxes for the cool-

ing process to occur. This effect is related to the shear thinning

behavior of fluid where, by increasing fluid elasticity the viscosity

of fluid and consequently the heat internally generated by viscous

Br1
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2 r
*τ*

R
i

*

R
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*

∫
∂u

*

∂r
*

--------dr
*

Ri
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Ro

*
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-----------------------------------=

Fig. 3. Variation of Nu
i
 versus De for different positive Br at α=0.1

and α=0.15 for κ=0.5 and ϕ=1. 

Fig. 4. Dimensionless temperature profile with variation (a) De at Br=1 and α=0.1 (b) a at Br=1 and De=1 (c) Br at De=1 and α=0.1, for κ=0.5

and ϕ=1.

Fig. 5. Effects of α and De on the first critical Brinkman number

variation.
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dissipation decreases, and therefore the cooling range of fluid extends.

For Brinkman number larger than the first critical Brinkman

(|Br|>|Br1|), a second critical Brinkman number (Br2) appears and

Nusselt number approaches to infinity. In other words, a singularity

occurs in the Nusselt curve. As can be seen from Fig. 6, when

|Br|<|Br2| the Nusselt number is positive and increases by increasing

Brinkman. Considering negative heat flux in the walls, it is expected

that wall temperatures to be lower than fluid bulk temperature; and

since the flux sign is also negative, the Nusselt number will be positive.

As heat generated due to viscous dissipation increases, the difference

between bulk temperature and wall temperature decreases and sub-

sequently Nusselt number increases. At the second critical Brink-

man number, wall temperature reaches to bulk temperature, and thus

the Nusselt number approaches infinity. For |Br|>|Br2|, the wall tem-

perature becomes higher than the bulk temperature and the sign of

the Nusselt number changes. In addition, by further increase of Brink-

man number, the difference between wall temperature and bulk tem-

perature increases and Nusselt number approaches to zero. The effects

of Deborah on Nusselt number can be divided into two parts:

1. For |Br|<|Br2|, wall temperature is lower than bulk temperature.

Since the fluid elasticity reduces the effect of viscous dissipation due

to shear thinning behavior of fluid, by increasing Deborah number,

the difference between wall temperature and bulk temperature increases

and consequently Nusselt number decreases.

2. For |Br|>|Br
2
|, wall temperature is higher than bulk temperature

and any increase in Deborah number decreases the difference between

wall temperature and bulk temperature and therefore, Nusselt num-

ber increases.

In Fig. 6c which is related to ϕ=1000, there is no singularity point,

and variation of Nui versus Br is monotonic and Nusselt number is

negative for all Brinkman values. This was expected, because in this

case inner wall temperature is always higher than bulk temperature

due to the output heat flux which is dominant at the outer wall. Also

by increasing Brinkman, Nusselt decreases, because the difference

between wall temperature and bulk temperature increases. The effect

of fluid elasticity on Nusselt number is complicated. In fact, cou-

pling of elasticity and viscous dissipation results in opposite behav-

iors in high and low values of Brinkman numbers. For high values of

Brinkman, increasing the fluid elasticity increases Nusselt number.

However, when viscous dissipation is weak this trend will be reversed

and Nusselt decreases by increasing fluid elasticity. This behavior is

also evident in Fig. 7, which represents the effects of De, α and Br on

Nusselt curve.

5-2. Constant wall temperature boundary conditions

For the different wall temperatures case, if the outer wall tempera-

ture is higher than the inner wall temperature (To>Ti), Brinkman

number is positive (Br>0) and if (To<Ti), then Brinkman number is

Negative (Br<0).

Fig. 8 presents the effects of Brinkman and Deborah numbers on

dimensionless temperature distribution. The upper parts of diagrams

are related to Br>0, and the lower parts are related to Br<0. The

upper and the lower parts show similar behaviors but in a mirror-

symmetrical fashion. This means that the trend of changes for the

positive Brinkman numbers in the region close to the inner wall is

similar to the trend of the changes for the negative Brinkman num-

Fig. 6. Variation of Nu
i
 versus negative Br and De for α=0.1, κ=0.5 (a) ϕ=0.001 (b) ϕ=1 (c) ϕ=1000.

Fig. 7. Variation of Nu
i
 versus De for different negative Br at α=0.1

and α=0.15 for κ=0.5 and ϕ=1. 
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bers in the region close to the outer wall and vice versa.

As can be seen from this figure, the effect of increasing Brinkman

and Deborah on temperature profile is opposite of one another,

because by increasing Brinkman the heat internally generated by vis-

cous dissipation increases, but when the elasticity level increases due

to shear-thinning behavior of fluid, the inside heat generation decreases.

For small values of viscous dissipation the fluid starts to heat up with

uniform slope from the colder wall until it reaches to the temperature

of the warmer wall. But by increasing Brinkman number, the tem-

perature reaches a maximum value near the warmer wall. Subsequently,

direction of heat flux changes and in fact a cooling process happens

at the warmer wall. This behavior is due to the heat internally gener-

ated by viscous dissipation, which increases fluid temperature. But,

since the boundary conditions are set as fixed temperatures at the

walls, the fluid temperature will be higher than warmer wall tem-

perature, and therefore the fluid will be cooled at the both walls.

Fig. 9 shows effects of Brinkman and Deborah on inner Nusselt

number. Fig. 9a and Fig. 9b are related to positive and negative

Brinkman numbers, respectively. In Fig. 9a by increasing Brinkman

number, the Nusselt number increases due to stronger viscous dissi-

pation, generating more internal heat to be evacuated, which leads to

higher Nusselt numbers. But when viscous dissipation is coupled

with elasticity, opposite behaviors are observed for small and large

Brinkman numbers. For small Brinkman numbers, an increase in

elasticity causes decrease in Nusselt, but for large Brinkman numbers

increasing elasticity increases Nusselt number. This can be clarified

by referring to Fig. 8a, where, by increasing elasticity temperature, the

gradient at the inner wall (wall heat flux) is decreased. Also, because

of sharper velocity gradient adjacent to the walls for high elasticity

and hence reduction of thermal resistance, the difference between the

bulk temperature and wall temperature is decreased. As for normal-

Fig. 8. Dimensionless temperature profile with variations of (a) De

and |Br|=1 (b) |Br| and De=1, for α=0.1, κ=0.5 and T
i 
≠T

o
.

Fig. 9. Variation of Nu
i
 with De and (a) Br>0 (b) Br<0 for α=0.1,

κ=0.5 and T
i 
≠T

o
.
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ized temperature expression, the dimensionless bulk temperature is

also decreased. For small Brinkman numbers, the decrease in wall heat

flux due to elasticity growth is higher than the decrease in dimen-

sionless bulk temperature; as a result, the Nusselt number is reduced,

but this behavior is reversed at higher values of Brinkman. 

Note that for positive Brinkman numbers the minimum tempera-

ture occurs at the inner wall, so the normalized bulk temperature is

always positive. Also, the temperature gradient is positive at the

inner wall. Thus, according to Eq. 35a, the Nusselt number should

also be positive, and in this case Nusselt curve is always monotonic.

But for negative Brinkman numbers a singularity point happens in

the Nusselt curve (Fig. 9b). For small Brinkman numbers, since wall

heat flux and normalized bulk temperature are both positive, the

Nusselt number will be positive. But by increasing viscous dissipa-

tion, Nusselt drops to zero and then becomes negative. This occur-

rence is related to cooling phenomenon at the warmer wall, which

causes the temperature gradient to become zero and then negative as

already discussed. Also by Brinkman growth, bulk temperature increases,

but since wall temperature is constant, the difference between these

temperatures is reduced until it tends to zero and as a result singular-

ity occurs in Nusselt curve. For higher values of Brinkman the bulk

temperature will be higher than the wall temperature, and therefore

the sign of Nusselt will be changed again.

Fig. 10 shows the effect of Deborah number and mobility factor on

Nusselt curve for positive values of Brinkman number. Similar

behavior as Fig. 9a is observed when elasticity effects are coupled to

viscous dissipation effects. 

For the identical wall temperature case, as can be seen in Fig. 11,

Nusselt number increases by increasing fluid elasticity level, but it is

independent of Brinkman number. Note although, by changing Brink-

man number, both dimensionless temperature gradient and normal-

ized bulk temperature vary; however, their variations are such that

the ratio of numerator to denominator of Nusselt fraction (Eqs. 36) is

kept constant. 

6. Conclusions

Forced convection heat transfer in the concentric annulus was

investigated by the analytical method for viscoelastic fluid obeying

Giesekus model. The problem was analyzed under steady, laminar,

thermal and hydrodynamical fully developed conditions and includ-

ing viscous dissipation. Thermo-physical properties were assumed

independent of temperature and axial heat conduction was negligi-

ble. Boundary conditions were constant wall heat fluxes and con-

stant wall temperatures. Brinkman and Nusselt numbers, which are

presented as dimensionless groups to show the importance of vis-

cous dissipation and convective heat transfer level respectively, were

defined for two cases of boundary conditions. Effects of viscous dis-

sipation along with elasticity (Deborah dimensionless group and

mobility factor), were investigated on Nusselt number and dimen-

sionless temperature profile. Results showed a significant influence

of these parameters on heat transfer. For the constant flux boundary

conditions, analysis was also performed for fluid heating (Br > 0)

and fluid cooling (Br < 0). In the cooling process a critical Brinkman

number (Br
1) is derived. When Brinkman number becomes larger

than this critical value, heat generated internally by viscous dissipa-

tion overcomes the effect of wall cooling and fluid starts to warm up.

For the constant temperature boundary conditions, two cases of dif-

ferent and identical wall temperatures were considered. It was shown

that when walls temperatures are identical, Nusselt number is inde-

pendent of viscous dissipation. 

Nomenclatures

Br : Brinkman number

C
1

: first integration constant

C
2

: second integration constant

cp : specific heat at constant pressure (J/kg.K)

De : Deborah number, De=λU/δ
Fig. 10. Variation of Nu

i
 versus De for different positive Br at α=0.1

and α=0.15 for κ=0.5 and T
i 
≠T

o
.

Fig. 11. Variation of Nu
i
 and Nu

o
 with De and α for κ=0.5 and T

i 
=T

o
.
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DH : hydraulic diameter, DH 
≡2δ

h : heat transfer coefficient (Watt/m2.K)

k : thermal conductivity (Watt/m.K)

Nu : Nusselt number, Nu=2hδ/k

q : heat flux (Watt/m2)

r : radial coordinate (m)

Ri : radius of inner cylinder 

Ro : radius of outer cylinder

Rm : radius where velocity is maximum

t : time (s)

T : fluid temperature (K)

u : velocity (m/s)

U : average velocity

z : axial coordinate (m)

Greek Letters

α : mobility factor

δ : annular gap, δ=Ro-Ri

: shear rate tensor (s-1)

η : zero-shear viscosity (Pa.s)

λ : zero-shear relaxation time (s)

ρ : fluid density (kg/m3)

τ : stress tensor (Pa)

ψ : dimensionless group for pressure gradient

κ : radius ratio

ϕ : ratio of outer and inner wall heat fluxes

Φ : viscous dissipation function

Θ : dimensionless temperature for isoflux boundary conditions

ϑ : convected derivative

Subscripts

w : refers to wall value

b : refers to bulk value

in : refers to inlet

i : refers to inner wall

o : refers to outer wall

Superscripts

* : refers to dimensionless quantities

T : transpose of tensor
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