• Title/Summary/Keyword: Nusselt 수

Search Result 235, Processing Time 0.026 seconds

Mass transfer study of double diffusive natural convection in a two-dimensional enclosure during the physical vapor transport of mercurous bromide (Hg2Br2): Part II. Mass transfer (브로민화 수은(I)(Hg2Br2) 물리적 증착공정의 2차원 밀폐공간에서 이중확산 자연 대류에서의 물질전달 연구: Part II. 물질전달)

  • Sung Ho Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.145-152
    • /
    • 2023
  • The average Nusselt numbers in the source and crystal region for the variation of thermal Grashof number (Grt) in the range of 2.31 × 104 ≤ Grt ≤ 4.68 × 104 are obtained through numerical simulations. It is shown the average Nusselt number in the crystal region is more than twice as large as the average Nusselt number in the source region. The average Nusselt number in the source region shows an increasing tendency with increasing the thermal Grashof number, Grt, while the average Nusselt number in the crystal region shows a decreasing tendency with increasing thermal Grashof number, Grt. For the variation of the solutal Grashof number (Grs) in the ran ge of 3.28 × 105 ≤ Grs ≤ 4.43 × 105, the average Sherwood number in the source region and crystal region tends to decrease as the solutal Grashof number, Grs increases. The average Sherwood number in the crystal region is about four times greater than the average Sherwood number in the source region.

Numerical Study on Heat Transfer and Pressure Drop Characteristics in a Horizontal Channel with Dimple and Protrusion Arrays (딤플과 돌출이 설치된 수평채널의 열전달 및 압력강하 특성에 관한 수치해석적 연구)

  • Kim, Ji-Hoon;Heo, Joo-Nyoung;Shin, Jee-Young;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this study, numerical analyses were performed on pressure drop and heat transfer characteristics in a rectangular horizontal channel with dimple and protrusion arrays of different height. The dimples/protrusions were installed at both top and bottom walls of the rectangular channel. The dimple and protrusion depths are 0.125, 0.2, 0.25, 0.3, and 0.375 times diameter. In case of the dimple, the highest Nusselt number occurred at the rear side of the dimple, and the average Nusselt number tended to decrease slightly with increase of depth. In case of protrusion, on the other hand, the highest Nusselt number occurred at the front side of the protrusion, and the average Nusselt number was increased with the increase of height. In both dimple and protrusion, the average Nusselt number and pressure drop were increased with the increase of velocity. Performance factor was decreased with the increase of velocity, and it was found that the best performance factor was obtained in the low velocity region.

Study of Natural Convection of Magnetic Fluid in Cubic Cavity (정방형관 내에서 자성유체의 자연대류현상에 대한 수치적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon;Seo, Lee-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.637-646
    • /
    • 2013
  • This study aims to numerically investigate the natural convection characteristics of a magnetic fluid in a cubic cavity. The governing equations of the magnetic fluid are solved using the Generalized-Simplified Marker and Cell Method (GSMAC). The natural convection and heat transfer characteristics of the magnetic fluid were analyzed by varying the intensity and direction of the magnetic field. As a result, it was found that the natural convection characteristics were controlled by the intensity and direction of the magnetic field, and the mean Nusselt numbers were minimized at a vertical intensity of H=-4000 and horizontal intensity of H=12000 of the magnetic field. In addition, the mean Nusselt numbers increased with the intensities of the magnetic field, regardless of the direction of the magnetic field.

Thermal and Flow Analysis of the Flat Tube with Micro-Channels (미세유로를 갖는 납작관의 열·유동 해석)

  • Chung, Kilyoan;Lee, Kwan-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.978-986
    • /
    • 1999
  • In this study, the general thermal and flow characteristics of flat tube with micro-channels has been studied and the correlation of Nusselt number and friction factor is proposed. The optimal flat tube geometry is determined by optimal design process. It is assumed to be a three dimensional laminar flow in the analysis of thermal and flow characteristics. The periodic boundary condition is applied since the geometry of flat tube with micro-channels shows uniform cross-section in primary flow direction. Local Nusselt number is examined for thermal characteristics of each membrane, and module average Nusselt number and friction factor are calculated to determine the characteristics of the heat transfer and pressure drop in overall flat tube with microchannels. The correlations between Nusselt number and friction factor are given by Reynolds number, aspect ratio of membranes, and the width of flat tube. ALM (Augmented Lagrangian Multiplier) method is applied to the correlations to determine an optimal shape of flat tube. It is shown that the optimal aspect ratio of flat tube is approximately 1.0, irrespective of the width of flat tube and Reynolds number.

The Friction Coefficients and the Nusselt Number from an Educational Point of View (교육적 측면에서의 마찰계수와 누셀트 수)

  • Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.9-13
    • /
    • 2001
  • In the present study, the friction coefficients (Fanning and Moody coefficients) and the Nusselt number is reviewed from an educational point of view. It is discussed that these dimensionless numbers can be treated with two lengh scales. Also, the similarity between the momentum and heat transfer is discussed based on the length scales.

  • PDF

Effect of Prandtl Number on Natural Convection in Tilted Square Enclosure with Inner Circular Cylinder (Prandtl 수 변화가 내부 원형 실린더가 존재하는 기울어진 정사각형 밀폐계 내부의 자연대류 현상에 미치는 영향)

  • Mun, Gi Su;Choi, Changyoung;Ha, Man Yeong;Yoon, Hyun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.935-942
    • /
    • 2014
  • A numerical analysis of the effect of the Prandtl number on the natural convection in a cold outer tilted square enclosure with an inner hot circular cylinder is presented. Several Prandtl numbers (Pr=0.1, 0.7, 7) are considered, with different angles($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$) for the enclosure and Rayleigh numbers ($Ra=10^3$, $10^4$, $10^5$). The effect of the Prandtl number on the natural convection is analyzed using isotherms and streamline and surface-averaged Nusselt numbers. The flow and heat transfer characteristics are found to be dependent on the time for $Ra=10^5$ and Pr=0.1 at angles of $0^{\circ}$ and $45^{\circ}$. However, in the other cases, the flow and heat transfer characteristics are independent of the time.The surfaceaveraged Nusselt number increases with an increase in the Prandtl number. As the Prandtl number increases, the Nusselt number becomes larger regardless of the angle for $Ra=10^5$. In particular, the Nusselt number steeply increases when the angle is $45^{\circ}$ for $Ra=10^5$ and Pr=0.1.

Convective heat transfer characteristics of a two-dimensional turbulent wall attaching offset jet (2차원 난류 벽부착제트의 대류열전달 특성)

  • Yun, Sun-Hyeon;Lee, Dae-Hui;Song, Heung-Bok;Kim, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3304-3312
    • /
    • 1996
  • An experimental study on the convective heat transfer characteristics was performed for a two-dimensional wall attaching offset jet(WAOJ). Thermochromic liquid crystal was used to measure the plate wall temperature. The Nusselt number was measured for Reynolds numbers from 6, 500 to 39, 000, and the offset ratios from 0.5 to 15. The maximum Nusselt number point coincides with the time-averaged reattachment point and Nusselt number decreases monotonically after the jet reattaches on the wall. In the recirculation region Nusselt number minimize near the upstream corner and then increases as X/D decreases to vanishes. This suggests the existence of secondary vortices, causing an additional mixing of the flow in the corner. The correlations between the local Nusselt number and Reynolds number, Re, offset ratio, H/D, and streamwise distance, X/D are presented.

An Experimental Study on the Natural Convection Heat Transfer with a Heat Source in a Top-Vented Cylindrical Enclosure (내부열원을 갖는 Top-vented 원통형 밀폐공간에서의 자연대류에 관한 실험적 연구)

  • Kang, Kweon-Ho;Shin, Hyun-Kyoo;Shin, Chee-Burm;Yoo, Jai-suk;Kim, Chul;Park, Young-Moo
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.203-208
    • /
    • 1996
  • An experimental study was conducted on the natural convection heat transfer with a heat source (heater) in a top-vented cylindrical enclosure. Using an Air Controlled Oxidizer (ACO) for treatment of depleted uranium chips, the heat transfer characteristics of the ACO was studied with various heat generation. Heat flux, Nusselt number, Grashof number and Rayleigh number were obtained and the relation between Nusselt number and Rayleigh number was derived.

  • PDF

Heat Transfer and Flow Characteristics in an Annulus Filled with Aluminum Foam (발포 알루미늄이 삽입된 환형관에서의 열전달 및 유동특성)

  • Noh Joo-Suk;Han Young-Hee;Lee Kye-Bock;Lee Chung-Gu
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.60-66
    • /
    • 2006
  • An experimental investigation on the flow and convective heat transfer characteristics has been carried out far aluminum foam heat sink inserted into the annulus to examine the feasibility as a heat sink. Two aluminum foams or different permeability were selected to provide the friction factor and heat transfer correlations as function of Darcy, Reynolds and Prandtl number. Experimental results show that the friction factor is higher than clear annulus without aluminum foam, while $6\sim10$ times augmentation in Nusselt number is obtained. This technique can be used for the compactness of the heat exchanger.

A Numerical Study on the Natural Convection from Two Isothermal Square Beams Attached to an Vertical Adiabatic Plate (수직단열판에 부착된 2개의 등온 사각비임에서의 자연대류 열전달에 관한 수치 해석)

  • Park, Jae-Lim;Bae, Dae-Sok;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 1991
  • A Steady laminar natural convection heat transfer from two isothermal square beams attached to a vertical adiabatic plate has been studied numerically. The results have been obtained for dimensionless beam spacings, $0.5{\le}D/L{\le}3.0$, and for Gr=5000-10000 at ${\phi}_2/{\phi}_1=1.0$. 1. The local Nusselt number from the beam surface is increased with the dimension-less beam spacing D/L. but that of the downward surface of the lower beam is almost same as the D/L increases. And, the local Nusselt number from the upward surface of a lower beam is greatly increased with D/L. 2. The beam spacings of the maximum mean Nusselt number for the downward surface of an upper beam and the upward surface of a lower beam occur at. D/L =2.6 and 2.0 respectively. 3. The beam spacing for the maximum total mean Nusselt number occurs at D/L = 2.6.

  • PDF