Heat Transfer and Flow Characteristics in an Annulus Filled with Aluminum Foam

발포 알루미늄이 삽입된 환형관에서의 열전달 및 유동특성

  • Noh Joo-Suk (Department of Indoor Environment System, Kyonggi Institute of Technology) ;
  • Han Young-Hee (School of Mechanical Engineering, Chungbuk National University) ;
  • Lee Kye-Bock (School of Mechanical Engineering, Chungbuk National University) ;
  • Lee Chung-Gu (School of Mechanical Engineering, Chungbuk National University)
  • 노주석 (충북대학교 기계공학부) ;
  • 한영희 (경기공업대학 실내환경시스템과) ;
  • 이계복 (경기공업대학 실내환경시스템과) ;
  • 이충구 (경기공업대학 실내환경시스템과)
  • Published : 2006.02.01

Abstract

An experimental investigation on the flow and convective heat transfer characteristics has been carried out far aluminum foam heat sink inserted into the annulus to examine the feasibility as a heat sink. Two aluminum foams or different permeability were selected to provide the friction factor and heat transfer correlations as function of Darcy, Reynolds and Prandtl number. Experimental results show that the friction factor is higher than clear annulus without aluminum foam, while $6\sim10$ times augmentation in Nusselt number is obtained. This technique can be used for the compactness of the heat exchanger.

발포 알루미늄이 삽입된 환형관에서의 유동과 대류 열전달 특성을 실험적 연구를 수행하여 분석하고 heat sink로서의 실현 가능성을 검토하였다. 다른 기공밀도를 갖는 두 종류의 발포 알루미늄을 사용하여 유동과 열전달 특성을 파악하고 마찰계수와 열전달 관련 Nusselt수를 Darcy 수, Reynolds수, Prandtl수의 함수로 상관식을 구하였다. 발포 알루미늄이 없는 경우에 비해 마찰계수는 증가하지만 Nusselt수에서도 6에서 10배의 증가를 나타낸다. 따라서 열교환기의 크기가 제한되는 경우 열교환기에 발포알루미늄을 삽입하면 전열면적을 감소시킬 수 있으므로 열교환기를 소형화할 수 있다.

Keywords

References

  1. Koh, J.C.Y.; Stevens, R.L. 'Enhancement of cooling effectiveness by porous materials in coolant passage', J. of Heat Transfer, Transactions of ASME, 1975, 97, 309-311 https://doi.org/10.1115/1.3450366
  2. Hwang, G.J.; Chao, C.H. 'Heat transfer measurement and analysis for sintered porous channels', J. of Heat Transfer, Transactions of ASME, 1994, 116, 456-464 https://doi.org/10.1115/1.2911418
  3. Paek, J.W.; Kang, B.H.; Kim, S.Y.; Hyun, J.M. 'Effective thermal conductivity and permeability of aluminum foam materials', Int. J. of Thermophysics, 2000, 21(2), 453-464 https://doi.org/10.1023/A:1006643815323
  4. Kim, S.Y.; Kang, B.H.; Kim, J.H. 'Forced convection from aluminum foam materials in an asymmetrically heated channel', International J. of Heat and Mass Transfer, 2001, 44, 1451-1454 https://doi.org/10.1016/S0017-9310(00)00187-3
  5. Kaviany, M. Principles of Heat Transfer in Porous Media, Springer, 1995, 48-60
  6. Kline, S.J.; McClintock, F.A. 'Describing uncertainties in single sample experiments', Mechanical Engineering, 1953, 3-8
  7. Beavers, G.S.; Sparrow, E.M. 'Non-Darcy flow through fibrous porous media', J. Applied Mechanics, Transactions of the ASME, 1969, 36, 711-714 https://doi.org/10.1115/1.3564760
  8. Kays, W.M.; Crawford, M.E. Convective Heat and Mass Transfer, McGraw-Hill, Inc., 1993, 81
  9. Heaton, H.S.; Reynolds, W.C.; Kay, W.M. 'Heat transfer in annular passages. Simultaneous development of velocity and temperature fields in laminar flow', International J. Heat and Mass Transfer, 1964, 7(7), 763-781 https://doi.org/10.1016/0017-9310(64)90006-7
  10. White, Viscous flow, McGraw-Hill, 1991, 124 (Shah and London, Laminar flow forced convection in ducts, 1978, Academic Press)
  11. Sparrow, E.M.; Loeffler, J.R. 'Longitudinal laminar flow between cylinders arranged in regular array', AIChE, 1959, 5, 325-329 https://doi.org/10.1002/aic.690050315