DOI QR코드

DOI QR Code

Effect of Prandtl Number on Natural Convection in Tilted Square Enclosure with Inner Circular Cylinder

Prandtl 수 변화가 내부 원형 실린더가 존재하는 기울어진 정사각형 밀폐계 내부의 자연대류 현상에 미치는 영향

  • Mun, Gi Su (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Choi, Changyoung (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Ha, Man Yeong (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Yoon, Hyun Sik (Global Core Research Center for Ships and Offshore Plants, Pusan Nat'l Univ.)
  • 문기수 (부산대학교 기계공학부) ;
  • 최창영 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부) ;
  • 윤현식 (조선해양플랜트 글로벌 핵심 연구센터)
  • Received : 2014.04.11
  • Accepted : 2014.07.07
  • Published : 2014.11.01

Abstract

A numerical analysis of the effect of the Prandtl number on the natural convection in a cold outer tilted square enclosure with an inner hot circular cylinder is presented. Several Prandtl numbers (Pr=0.1, 0.7, 7) are considered, with different angles($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$) for the enclosure and Rayleigh numbers ($Ra=10^3$, $10^4$, $10^5$). The effect of the Prandtl number on the natural convection is analyzed using isotherms and streamline and surface-averaged Nusselt numbers. The flow and heat transfer characteristics are found to be dependent on the time for $Ra=10^5$ and Pr=0.1 at angles of $0^{\circ}$ and $45^{\circ}$. However, in the other cases, the flow and heat transfer characteristics are independent of the time.The surfaceaveraged Nusselt number increases with an increase in the Prandtl number. As the Prandtl number increases, the Nusselt number becomes larger regardless of the angle for $Ra=10^5$. In particular, the Nusselt number steeply increases when the angle is $45^{\circ}$ for $Ra=10^5$ and Pr=0.1.

본 연구에서는 내부에 고온의 원형 실린더가 위치한 저온의 기울어진 사각 밀폐계에서 Prandtl 수 변화에 따른 밀폐계 내부 자연대류 현상에 대한 수치해석을 수행하였다. Rayleigh 수가 $10^3$, $10^4$, $10^5$ 그리고 밀폐계의 각도가 $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ 인 경우에 대해서 Prandtl 수를 0.1, 0.7, 7 로 변화시키며 Prandtl 수의 영향을 분석하였다. Prandtl 수의 변화에 따른 밀폐계 내부의 자연대류 현상은 실린더 표면과 밀폐계 벽면의 평균 Nusselt 수, 밀폐계 내부의 등온선 및 유선을 바탕으로 분석되었다. Prandtl 수가 0.7, 7 인 경우에는 각도 및 Rayleigh 수에 관계없이 열유동은 정상상태의 특성을 보였지만 Prandtl 수가 0.1 인 경우에는 Rayleigh 수가 $10^5$ 이고 밀폐계의 각도가 $0^{\circ}$$45^{\circ}$ 일 때 시간에 따라 열유동장이 변하였다. 실린더 표면과 밀폐계 벽면의 평균 Nusselt 수는 Rayleigh 수가 $10^5$ 인 경우, 각도에 관계없이 Prandtl 수가 클수록 증가하였다. 특히 Rayleigh 수가 $10^5$ 이고 Prandtl 수가 0.1 일 때 밀폐계의 각도가 $45^{\circ}$ 인 경우 실린더 표면과 밀폐계 벽면의 평균 Nusselt 수가 크게 증가하였다.

Keywords

References

  1. Lee, J. R. and Ha, M. Y., 2005, "A Numerical Study of Natural Convection in a Horizontal Enclosure with a Conducting Body," Int. J. Heat Mass Transfer, Vol. 48, 3308-3318. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.026
  2. Angeli, D., Levoni, P. and Barozzi, G. S., 2008, "Numerical Predictions for Stable Buoyant Regimes Within a Square Cavity Containing a Heated Horizontal Cylinder," Int. J. Heat Mass Transfer, Vol. 51, pp.553-565 https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.007
  3. Moukalled, F., Diab, H. and Acharya, S., 2007, "Laminar Natural Convection in a Horizontal Rhombic Annulus," Numer. Heat Transfer, Vol.1, pp. 89-107.
  4. Park, H. K., Ha, M. Y., Yoon, H. S., Park, Y. G. and Son, C., 2013, "A Numerical Study on Natural Convection in an Inclined Square Enclosure with a Circular Cylinder," Int. J. Heat Mass Transfer, Vol. 66, pp.295-314. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.029
  5. Mohamad, A. A. and Viskanta, R., 1991, "Transient Natural Convection of Low-Prandtl-Number Fluids in a Differentially Heated Cavity," Int. J. Numerical Methods in Fluids, Vol. 13, pp.61-81. https://doi.org/10.1002/fld.1650130105
  6. Yu, Z.-T., Fan, L.-W., Hu, Y.-C. and Cen, K.-F., 2010, "Prandtl Number Dependence of Laminar Natural Convection Heat Transfer in a Horizontal Cylinderical Enclosure with an Inner Coaxial Triangular Cylinder," Int. J. Heat Mass Transfer, Vol. 53, pp.1333-1340. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.027
  7. Yu, Z.-T., Xu, X., Hu, Y.-C., Fan, L.-W. and Cen, K.-F., 2010, "Prandtl Number Dependence of Laminar Natural Convection Heat Transfer in a Horizontal Cylinderical Enclosure with an Inner Coaxial Triangular Cylinder," Int. J. Heat Mass Transfer, Vol. 53, pp.5102-5110. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.056
  8. Kim, J., Kim, D. and Choi, H., 2001, "An Immersed- Boundary Finite Volume Method for Simulations of Flow in Complex Geometries," J. Comput. Phys. Vol.171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  9. Kim, J. and Choi, H., 2004, "An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries," KSME Int. J., Vol. 18, pp. 1026-1035.
  10. Choi, H. and Moin, P., 1994, "Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow," J. Comput. Phys. Vol.113, pp. 1-4 https://doi.org/10.1006/jcph.1994.1112
  11. Kim, B. S., Lee, D. S., Ha, M. Y. and Yoon, H. S., 2008, "A Numerical Study of Natural Convection in a Sqaure Enclosure with a Circular Cylinder at Different Vertical Locations," Int. J. Heat Mass Transfer , Vol. 51, pp.1888-1906 https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.033
  12. Lee, J. R., 2011, "Numerical Study for Prandtl Number Dependency on Natural Convection in an Enclosure with Square Adiabatic Body," Korean Society for Computational Fluids Engineering , Vol. 16, pp.29-36. https://doi.org/10.6112/kscfe.2011.16.3.029
  13. Bouras, A., Djezzar, M. and Ghernoug, C., 2013, "Numerical Simulation of Natural Convection Between Two Elliptical Cylinders: Influence of Rayleigh Number and Prandtl Number," Energy Procedia, Vol. 36, pp.788-797. https://doi.org/10.1016/j.egypro.2013.07.091
  14. Jeong, S. J., Yoon, H. S., Choi, C. and Ha, M. Y., 2013 "Natural Convection in Tilted Square Enclosure with Inner Circular Cylinder at Different Vertical Locations," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 12, pp. 1113-1120 https://doi.org/10.3795/KSME-B.2013.37.12.1113
  15. Koca, A., Oztop, H. F. and Varol, Y., 2007, "The Effect of Prandtl Number on Natural Convection in Triangular Enclosures with Localized Heating from Below," Int. Comm. Heat Mass Transfer, Vol.34, pp. 511-519. https://doi.org/10.1016/j.icheatmasstransfer.2007.01.006
  16. Projahn, U. and Darmstadt, H. B., 1985, "Prandtl Number Effects on Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli,"Warme-und Stoffubertragung, Vol.19, pp. 249-254. https://doi.org/10.1007/BF01002278