• Title/Summary/Keyword: Numerical optimization

Search Result 2,308, Processing Time 0.028 seconds

Multi-Level Optimization for Steel Frames using Discrete Variables (이산형 변수를 이용한 뼈대구조물의 다단계 최적설계)

  • 조효남;민대홍;박준용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.453-462
    • /
    • 2002
  • Discrete-sizing or standardized steel profiles are used in steel design and construction practice. However, most of numerical optimization methods follow additional step(round-up discrete-sizing routine) to use the standardized steel section profiles, and accordingly the optimality of the resulting design nay be doubtful. Thus, in this paper, an efficient multi-level optimization algorithm is proposed to improve the shortcoming of the conventional optimization methods using the round-up discrete-sizing routine. Also, multi-level optimization technique with a decomposition method that separates both system-level and element-level is incorporated in the algorithm to enhance the performance of the proposed algorithms. The proposed algorithm is expected to achieve considerable improvement on both the efficiency of the numerical process and the accuracy of the global optimum.

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.

Optimization for PSC Box Girder Bridges Using Design Sensitivity Analysis (설계 민감도 해석을 이용한 PSC 박스거더교의 최적설계)

  • 조선규;조효남;민대홍;이광민;김환기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.205-210
    • /
    • 2000
  • An optimum design algorithm of PSC box girder bridges using design sensitivity analysis is proposed in this paper. For the efficiency of the proposed algorithm, approximated reanalysis techniques using design sensitivity analysis are introduced. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses is proposed. A design sensitivity analysis of structural response is executed by automatic differentiation(AD). The efficiency and robustness of the proposed algorithm, compared with conventional algorithm, is successfully demonstrated in the numerical example.

  • PDF

Optimal selection of detection threshold for tracking systems (추적 시스템을 위한 최적 검출 문턱값 선택)

  • 정영헌
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1155-1158
    • /
    • 1999
  • In this paper, we consider the optimal control of detection threshold to minimize the conditional mean-square state estimation error for the probabilistic data association (PDA) filter. Earlier works on this problem involved the cumbersome graphical optimization algorithm or time-consuming numerical optimization algorithm. Using the numerical approximation of information reduction factor, we obtained the closed-form optimal detection threshold. This results are very useful for real-time implemenation.

  • PDF

Methods of Design Optimality Evaluation for Caisson Structural Systems (케이슨 구조계의 설계 최적성 평가)

  • Choi Min-Hee;Ryu Yeon-Sun;Cho Hyun-Man;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

Using Echolocation Search Algorithm (ESA) for truss size optimization

  • Nobahari, Mehdi;Ghabdiyan, Nafise
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.855-864
    • /
    • 2022
  • Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.

FIRST ORDER GRADIENT OPTIMIZATION IN LISP

  • Stanimirovic, Predrag;Rancic, Svetozar
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.701-716
    • /
    • 1998
  • In this paper we develop algorithms in programming lan-guage SCHEME for implementation of the main first order gradient techniques for unconstrained optimization. Implementation of the de-scent techniques which use non-optimal descent steps as well as imple-mentation of the optimal descent techniques are described. Also we investigate implementation of the global problem called optimization along a line. Developed programs are effective and simpler with re-spect to the corresponding in the procedural programming languages. Several numerical examples are reported.

A Design Optimization Study of Blunt Nose Hypersonic Flight Vehicle Using Surface Heat-transfer and Drag Minimization (표면열전달과 항력을 고려한 극초음속 비행체 선두부 최적형상설계)

  • Lim S.;Seo J. I.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.197-201
    • /
    • 2004
  • A design optimization of Sphere-Cone blunt nose hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. Heat transfer coefficient and drag coefficient are selected as objective function or design constraint. Control points of Bezier curve are considered as design variable.

  • PDF

Fuzzy-Enforced Complementarity Constraints in Nonlinear Interior Point Method-Based Optimization

  • Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • This paper presents a fuzzy set method to enforce complementarity constraints (CCs) in a nonlinear interior point method (NIPM)-based optimization. NIPM is a Newton-type approach to nonlinear programming problems, but it adopts log-barrier functions to deal with the obstacle of managing inequality constraints. The fuzzy-enforcement method has been implemented for CCs, which can be incorporated in optimization problems for real-world applications. In this paper, numerical simulations that apply this method to power system optimal power flow problems are included.

Shape Design Optimization Using Isogeometric Analysis (등기하 해석법을 이용한 형상 최적설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.233-238
    • /
    • 2008
  • In this paper, a shape design optimization method for linearly elastic problems is developed using isogeometric approach. In many design optimization problems for practical engineering models, initial raw data usually come from a CAD modeler. Then, designers should convert the CAD data into finite element mesh data since most of conventional design optimization tools are based on finite element analysis. During this conversion, there are some numerical errors due to geometric approximation, which causes accuracy problems in response as well as design sensitivity analyses. As a remedy for this phenomenon, the isogeometric analysis method can be one of the promising approaches for the shape design optimization. The main idea of isogeometric approach is that the basis functions used in analysis is exactly the same as the ones representing the geometry. This geometrically exact model can be used in the shape sensitivity analysis and design optimization as well. Therefore the shape design sensitivity with high accuracy can be obtained, which is very essential for a gradient-based optimization. Through numerical examples, it is verified that the shape design optimization based on an isogeometic approach works well.