Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.6.855

Using Echolocation Search Algorithm (ESA) for truss size optimization  

Nobahari, Mehdi (Department of Civil Engineering, Neyshabur Branch, Islamic Azad University)
Ghabdiyan, Nafise (Department of Mathematics, Neyshabur Branch, Islamic Azad University)
Publication Information
Steel and Composite Structures / v.42, no.6, 2022 , pp. 855-864 More about this Journal
Abstract
Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.
Keywords
ESA; evolutionary optimization algorithm; structural optimization; truss;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Astroza, R., Nguyen, L.T. and Nestorovic, T. (2016), "Finite element model updating using simulated annealing hybridized with unscented Kalman filter", Comput. Struct., 177, 176-191. https://doi.org/10.1016/j.compstruc.2016.09.001.   DOI
2 Camp, C.V, and Farshchin, M. (2014), "Design of space trusses using modified teaching - learning based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020.   DOI
3 Zhengtong, H., Zhengqi, G., Xiaokui, M. and Wanglin, C. (2019), "Multimaterial layout optimization of truss structures via an improved particle swarm optimization algorithm", Comput. Struct., 222, 10-24. https://doi.org/10.1016/j.compstruc.2019.06.004.   DOI
4 Zuo, W., Bai, J. and Li, B. (2014), "A hybrid OC-GA approach for fast and global truss optimization with frequency constraints", Appl. Soft Comput., 14, 528-535. https://doi.org/10.1016/j.asoc.2013.09.002.   DOI
5 Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017a), "A novel heuristic search algorithm for optimization with application to structural damage identification", Smart Struct. Syst., 19(4). https://doi.org/10.12989/sss.2017.19.4.449.   DOI
6 De Maeijer, P.K., Craeye, B., Snellings, R., Kazemi-Kamyab, H., Loots, M., Janssens, K. and Nuyts, G. (2020), "Effect of ultrafine fly ash on concrete performance and durability", Construct. Build. Mater., 263, 120493. https://doi.org/10.1016/j.conbuildmat.2020.120493.   DOI
7 Shabbir, F. and Omenzetter, P. (2015), "Particle swarm optimization with sequential niche technique for dynamic finite element model updating", Comput. Aided Civil Infrastruct. Eng., 30(5), 359-375. https://doi.org/10.1111/mice.12100.   DOI
8 Kaveh, A., Mirzaei, B. and Jafarvand, A. (2015a), "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables", Appl. Soft Comput. J., 28, 400-410. https://doi.org/10.1016/j.asoc.2014.11.056.   DOI
9 Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.   DOI
10 Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002.   DOI
11 Ozbasaran, H. and Eryilmaz, M. (2020), "Truss-sizing optimization attempts with CSA : a detailed evaluation", Soft Computing, 24(22), 16775-16801. https://doi.org/10.1007/s00500-020-04972-y.   DOI
12 Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2018), "A fast and robust method for damage detection of truss structures", Appl. Mathem. Modelling. 68, 368-382. https://doi.org/10.1016/j.apm.2018.11.025.   DOI
13 Sonmez, M. (2011a), "Artificial Bee Colony algorithm for optimization of truss structures", 11, 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003.   DOI
14 Wei, Z., Liu, J. and Lu, Z. (2018), "Structural damage detection using improved particle swarm optimization", Inverse Prob. Sci. Eng., 26(6), 792-810. https://doi.org/10.1080/17415977.2017.1347168.   DOI
15 Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5), 589-606. https://doi.org/10.12989/scs.2018.28.5.589.   DOI
16 Biglar, M., Gromada, M., Stachowicz, F. and Trzepiecinski, T. (2015), "Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm", Acta Mechanica, 226(10), 3451-3462. https://doi.org/10.1007/s00707-015-1388-1.   DOI
17 Kaveh, A., Mirzaei, B. and Jafarvand, A. (2015b), "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables", Appl. Soft Comput., 28, 400-410. https://doi.org/10.1016/j.asoc.2014.11.056.   DOI
18 Lamberti, L. (2008), "An efficient simulated annealing algorithm for design optimization of truss structures", Comput. Struct., 86(19-20), 1936-1953. https://doi.org/10.1016/j.compstruc.2008.02.004.   DOI
19 Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T. and Omata, H. (2021), "Generative adversarial network for road damage detection" Comput. Aided Civil Infrastruct. Eng., 36(1), 47-60. https://doi.org/10.1111/mice.12561.   DOI
20 Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017b), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4). https://doi.org/10.12989/scs.2017.25.4.485.   DOI
21 Salcedo-Sanz, S., Camacho-Gomez, C., Magdaleno, A., Pereira, E. and Lorenzana, A. (2017), "Structures vibration control via tuned mass dampers using a co-evolution coral reefs optimization algorithm", J. Sound Vib., 393, 62-75. https://doi.org/10.1016/j.jsv.2017.01.019.   DOI
22 Sonmez, M. (2011b), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidisciplinary Optimization, 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5.   DOI
23 Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070.   DOI
24 Heydari, A. (2019), "Elasto-plastic analysis of cylindrical vessel with arbitrary material gradation subjected to thermo-mechanical loading via DTM", Arab. J. Sci. Eng., 44(10), 8875-8891. https://doi.org/10.1007/s13369-019-03910-x.   DOI
25 Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), "A heuristic particle swarm optimizer for optimization of pin connected structures", Comput. Struct., 85(7-8), 340-349. https://doi.org/10.1016/j.compstruc.2006.11.020.   DOI
26 Bekdas, G., Nigdeli, S.M. and Yang, X.S. (2015), "Sizing optimization of truss structures using flower pollination algorithm", Appl. Soft Comput., 37, 322-331. https://doi.org/10.1016/j.asoc.2015.08.037.   DOI
27 Cazacu, R. and Grama, L. (2014), "Steel truss optimization using genetic algorithms and FEA", Procedia Technology, 12, 339-346. https://doi.org/10.1016/j.protcy.2013.12.496.   DOI
28 Gandomi, A.H., Talatahari, S., Yang, X.S. and Deb, S. (2013), "Design optimization of truss structures using cuckoo search algorithm", Struct. Des. Tall Spec. Build., 22(17), 1330-1349. https://doi.org/10.1002/tal.1033.   DOI
29 Golewski, G.L. (2018), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Cleaner Production, 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.   DOI
30 Islam, M.S., Do, J. and Kim, D. (2018), "Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes", Smart Struct. Syst., 21(2), 207-223. https://doi.org/10.12989/sss.2018.21.2.207.   DOI
31 Kaveh, A. and Khayatazad, M. (2013), "Ray optimization for size and shape optimization of truss structures", 117, 82-94. https://doi.org/10.1016/j.compstruc.2012.12.010.   DOI
32 Kaveh, A. and Talatahari, S. (2009), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003.   DOI
33 Cao, H., Qian, X., Chen, Z. and Zhu, H. (2017), "Enhanced particle swarm optimization for size and shape optimization of truss structures", Eng. Optimization, 49(11), 1939-1956. https://doi.org/10.1080/0305215X.2016.1273912.   DOI