Multi-Level Optimization for Steel Frames using Discrete Variables

이산형 변수를 이용한 뼈대구조물의 다단계 최적설계

  • Published : 2002.09.01

Abstract

Discrete-sizing or standardized steel profiles are used in steel design and construction practice. However, most of numerical optimization methods follow additional step(round-up discrete-sizing routine) to use the standardized steel section profiles, and accordingly the optimality of the resulting design nay be doubtful. Thus, in this paper, an efficient multi-level optimization algorithm is proposed to improve the shortcoming of the conventional optimization methods using the round-up discrete-sizing routine. Also, multi-level optimization technique with a decomposition method that separates both system-level and element-level is incorporated in the algorithm to enhance the performance of the proposed algorithms. The proposed algorithm is expected to achieve considerable improvement on both the efficiency of the numerical process and the accuracy of the global optimum.

건설공사의 설계와 시공에서 표준화된 이산형 강재단면을 이용하고 있으나, 대부분의 최적화기법에서는 표준강재단면을 사용하기 위해 별도의 이산화 과정을 가지게 되므로 설계결과의 최적성을 보장할 수 없다. 따라서, 본 논문에서는 제안된 알고리즘의 효율성을 높이기 위해 전체구조계와 구조요소계로 나누는 다단계 알고리즘을 적용하였다 수치해석 과정의 효율성과 최적해의 정확성을 예제를 통하여 비교·검토하였다.

Keywords

References

  1. El-Beltagy, M. A. and Keane, A. J., 'A comparison of various optimization algorithms on a multilevel problem', Artificial Intelligence, 12, 1999, pp.639-654
  2. Schoonover, P. L., 'Application of a genetic algorithm to the optimization of hybrid rockets', Journal of Spacecraft and Rockets, 37, 2000, pp.622-629 https://doi.org/10.2514/2.3610
  3. Ghasemi, M. R., 'Optimization of trusses using genetic algorithms for discrete and continuous variables', Engineering Computations, 16, 1999, pp.272-301 https://doi.org/10.1108/02644409910266403
  4. Ghasemi, M. R., 'Optimization of trusses using genetic algorithms for discrete and continuous variables', Engineering Computations, 16, 1999, pp.272-301 https://doi.org/10.1108/02644409910266403
  5. Ip, W. H., 'Multi-product planning and scheduling using genetic algorithm approach', Computers & Industrial Engineering, 38, 2000, pp.283-296 https://doi.org/10.1016/S0360-8352(00)00044-9
  6. Li, QS., 'Multilevel optimal design of builings with active control under winds using genetic algorithms,' Journal of Wind Engineering and Industrial Aerodynamics, Vol. 86, No. 1, 2000, pp.65-86 https://doi.org/10.1016/S0167-6105(00)00004-0
  7. Kumar, R., Rockett, P., 'Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning- follows-de-composition strategy,' IEEE Transactions on Neural Networks, Vol. 9, No. 5, 1998, pp.822-830 https://doi.org/10.1109/72.712155
  8. Lee, DK., 'Hybrid system approach to optimum design of a ship,' Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol. 13, 1999, pp.1-11
  9. Okamoto, M., 'Nonlinear numerical optimization with use of a hybrid Genetic Algorithm incorporating the Modified Powell method,' Applied Mathematics and Computation, Vol. 91, 1998, pp.63-72 https://doi.org/10.1016/S0096-3003(97)10007-8
  10. Kirsch, U., 'Multilevel approach to optimum structural design,' ASCE Journal of the Structural Division, Vol. 101, 1975, pp.957-974
  11. Sobieszczanski-Sobieski, J., 'Structural optimization by multilevel decomposition,' AIAA Journal, Vol. 23, 1985, pp.1775-1782 https://doi.org/10.2514/3.9165
  12. Chattopadhyay, A., 'Multilevel decomposition procedure for efficient design optimization of helicopter rotor blades,' AIAA Journal, Vol. 33, 1995, pp.223-230 https://doi.org/10.2514/3.12424
  13. Chattopadhyay, A., Pagaldipti, N., 'A multidisciplinary optimization using semianalytical sensitivity analysis procedure and multilevel decomposition,' Computers Math & Applic, Vol. 29, 1995, pp.55-66
  14. Gang, L., Multiobjective and multilevel optimization for steel frames, Engineering Structures, 21, 1999, pp.519-529 https://doi.org/10.1016/S0141-0296(97)00226-5
  15. AISC., Load and Resistance Factor Design Manual of steel construction, American Institute of Steel Construction, Chicago, 1994, p.126-143
  16. AISC., Load and resistance factor design specification for structural steel buildings, American Institute of Steel Construction, Chicago, 1993
  17. AISC., Seismic provisions for structural steel buildings, American Institute of Steel Construction, Chicago, 1992
  18. Vanderplaats, G. N., ASD : A FORTRAN Program for Automated Design Synthesis, Engineering Design Optimization, Inc, Santa Barbara, 1985
  19. Goldberg, D. E., Computer-Aided Gas pipeline using Genetic Algorithm and Rule Learning, Ph.D. thesis, Dept. Civil Eng., Univ. Michigan., 1983.
  20. Lust, R. V., Schmit, L. A., 'Alternative Approximation Concepts for Space Frame Synthesis', AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Materials Conference, April 82, 1985, pp.333-348
  21. Griewank, A., and Corliss, G. F., Automatic differentiation of algorithms : thoery, implementation, and application. Society of Industrial and Applied Mathematics, Philadelphia, Pa. 1991
  22. Berz, M., Computational differentiation-techniques, tools, and applications, Society for Industrial and Applied Mathmatics, Philadelphia, 1996
  23. Bichof, C., ADIFOR-generating derivative codes from FORTRAN 77 programs, Scientific Programming, 1992
  24. Bischof, C., The ADIFOR2.0 system for the automatic differentiation of FORTRAN 77 programs, IEEE Computational Sci. & Eng., 3(3), 1996, pp.18-32 https://doi.org/10.1109/99.537089
  25. Camp C., Pezeshk S., and Cao G.(1998) 'optimized design of using genetic algorithm', ASCE Journal of structural engineering, Vol. 124, No. 5, pp.551-559 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
  26. 조효남, 민대홍, 박준용, 이산형변수를 이용한 뼈대구조물의 다단계 최적설계, 2000년 가을 전산구조공학회 학술발표회 논문집 제13권, 제20집