• Title/Summary/Keyword: Numerical method

Search Result 18,761, Processing Time 0.046 seconds

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

Analysis of Blade Forming using an Elasto-Plastic Finite Element Method with Directional Reduced Integration (선향적저감적분을 이용한 탄소성 유한요소법에 의한 블레이드의 성형 해석)

  • Choi, Tae-Hoon;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.365-374
    • /
    • 1995
  • Numerical simulation of blade forming is carried out as stretch forming by an elasto-plastic finite element method. The method adopts a Lagrangian formulation, which incorporates large deformation and rotation, with a penalty method to treat the contact boundary condition. Numerical integration is done with a directional reduced integration scheme to avoid shear locking. The numerical results demonstrates various final shapes of blades which depend on the variation of the stretching force. The strain distributions in deformed blades are also obtained with the variation of the stretching force.

  • PDF

Numerical Tests of Large Mass Method for Stress Calculation of Euler-Bernoulli Beams Subjected to Support Accelerations (지지점 가속도에 의해 가진되는 보의 응력계산에 대한 거대질량법의 정확도)

  • Kim, Yong-Woo;Choi, Nam Seok;Jhung, Myung Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.188-193
    • /
    • 2013
  • The large mass method for dynamic analysis of statically determinate beams subjected to in-phase support motions is justified by showing that the equation of motion of the beams under consideration is equivalent to that of large mass model of the beam when an appropriate large mass ratio is employed. The accuracy of the stress responses based on the beam large mass method is investigated through careful numerical tests. The numerical results are compared to analytic solutions and the comparison shows that the large mass method yields not only the time history of motion but also the distributions of bending moment and shear force accurately.

  • PDF

Adaptive directivity synthesis simulation of point source array using algorithm combined directive and recursive method(LMS method) (직접법과 반복법(LMS법)의 합성 알고리즘을 이용한 직선배열 점음원의 적응 지향성 합성 SIMULATION)

  • 조기량
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1453-1462
    • /
    • 1996
  • A numerical simulation is carried out on the directiveity synthesis of ultrasonic transducers by point source array. Directive method with combined LMS(Least-Mean-Square) method is practiced by means of a iterative method to realize the desired directivity. The directiviey of quasi-ideal beam with a beam width and a directive arbitrary specified was chosen. On the numerical resut, Proposed algorithm shows higher speed of clculating simulation than that of LMS method, and make adaptive control, which enables the desired directivity. Numerical simulations are carried out by PC(CPU:80486 DX2, RAM 16Mbyte).

  • PDF

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Computation of Pressure Fields in the Lagrangian Vortex Method (Lagrangian 보오텍스 방법에서의 압력장 계산)

  • 이승재;김광수;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

Numerical Simulation for an Air-Solid Two-Phase Flow in a Vertical Pipe (기체 흐름에 고체입자가 섞인 파이프 내의 이상유동에 대한 수치 해석)

  • Pak S. I.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • A numerical simulation was made to determine the motion of particles in the fluid. The simulation is based on the Eulerian-Lagrangian method. The fluid motion was solved using a PISO-based finite-element method and a $\kappa-\epsilon$ model of turbulence. In the Lagrangian method for the solid phase, the trajectories of particles are calculated by integrating the equations of motion of a single Particle, and the collision between particles are taken into account. The influence of particles on the fluid phase is taken into account by introducing source terms in the Eulerian equations govering the fluid flow. It is known as the particle-source-in-cell (PSIC) method. Also, the turbulent effect in the particles and fluid notion is considered. The numerical results were compared with the experiment for a two-phase flow in a vertical pipe.

  • PDF

Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems (자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교)

  • Lee, Se-Hui;Choe, Myeong-Jun;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

  • Ham, Sang-Hwan;Cho, Su-Yeon;Kang, Dong-Woo;Lee, Hyung-Woo;Chan, Hong-Soon;Lee, Ju
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • This paper describes design and characteristic analysis of long primary type linear synchronous motor (LSM) for high speed train system. LSM is designed using loading distribution method and magnetic equivalent circuit. For characteristic analysis of LSM, analytical and numerical methods are applied. Analytical method for solving the magnetic field distribution of the analytic model is based on the Maxwell’s equations. Using the characteristic equation and magnetic equivalent circuit, we analyze the effect of variation of parameters, and then we validate the result by comparing with numerical method by finite element method (FEM). We compare the analytical method with numerical method for analyzing the effect by variable parameters. This result will be useful of design and forecast of performance without FEM.

  • PDF

Development of a Numerical Model of Shallow-Water Flow using Cut-cell System (분할격자체계를 이용한 천수흐름 수치모형의 개발)

  • Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • Numerical implementation with a Cartesian cut-cell method is conducted in this study. A Cartesian cut-cell method is an easy and efficient mesh generation methodology for complex geometries. In this method, a background Cartesian grid is employed for most of computational domain and a cut-cell grid is applied for the peculiar grids where the flow characteristics are changed such as solid boundary to enhance the accuracy, applicability and efficiency. Accurate representation of complex geometries can be obtained by using the cut-cell method. The cut-cell grids are constructed with irregular meshes which have various shape and size. Therefore, the finite volume method is applied to numerical discretization on a irregular domain. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. The weighted average flux method applied on the Cartesian cut cell grid for stabilization of the numerical results. To validate the numerical model using the Cartesian cut-cell grids, the model is applied to the rectangular tank problem of which the exact solutions exist. As a comparison of numerical results with the analytical solutions, the numerical scheme well represents flow characteristics such as free surface elevation and velocities in x-and y-directions in a rectangular tank with the Cartesian and cut-cell grids.