• Title/Summary/Keyword: Numerical inversion method

Search Result 148, Processing Time 0.025 seconds

An Inversion Package for Interpretation of Microgravity Data (고정밀 중력탐사 자료 역산 패키지)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Chung, Hojoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Since microgravity survey aims to delineate subsurface density structures in small scale, it requires inversion method, which is able to resolve small scale structures. It can be achieved by adopting a stabilizing functional which separates density boundary distinctly, which is different concept from general inversion routines. We composed Matlab-based interactive two-dimensional microgravity data inversion package containing several kinds of inversion routines with different stabilizing functional, for handling various geologic conditions and survey purposes. Different kinds of inversion routines in the package were verified and examined with representative synthetic data sets generated by numerical modeling. In addition, we applied the developed package to a real microgravity survey data.

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

AN ELECTROMAGNETIC FREE CONVECTION FLOW OF A MICROPOLAR FLUID WITH RELAXATION TIME

  • Zakaria, M.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.539-550
    • /
    • 2001
  • In the present investigation, we study the influence of a transverse magnetic field through a porous medium. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical computations for the temperature, the microrotation and the velocity distributions as well as for the induced magnetic and electric fields and carried out and represented graphically.

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.

Moving load response in a rotating generalized thermoelastic medium

  • Ailawalia, Praveen;Narah, Naib Singh
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • The steady state response of a rotating generalized thermoelastic solid to a moving point load has been investigated. The transformed components of displacement, force stress and temperature distribution are obtained by using Fourier transformation. These components are then inverted and the results are obtained in the physical domain by applying a numerical inversion method. The numerical results are presented graphically for a particular model. A particular result is also deduced from the present investigation.

Laplace-domain Waveform Inversion using the Pseudo-Hessian of the Logarithmic Objective Function and the Levenberg-Marquardt Algorithm (로그 목적함수의 유사 헤시안을 이용한 라플라스 영역 파형 역산과 레벤버그-마쿼트 알고리듬)

  • Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.195-201
    • /
    • 2019
  • The logarithmic objective function used in waveform inversion minimizes the logarithmic differences between the observed and modeled data. Laplace-domain waveform inversions usually adopt the logarithmic objective function and the diagonal elements of the pseudo-Hessian for optimization. In this case, we apply the Levenberg-Marquardt algorithm to prevent the diagonal elements of the pseudo-Hessian from being zero or near-zero values. In this study, we analyzed the diagonal elements of the pseudo-Hessian of the logarithmic objective function and showed that there is no zero or near-zero value in the diagonal elements of the pseudo-Hessian for acoustic waveform inversion in the Laplace domain. Accordingly, we do not need to apply the Levenberg-Marquardt algorithm when we regularize the gradient direction using the pseudo-Hessian of the logarithmic objective function. Numerical examples using synthetic and field datasets demonstrate that we can obtain inversion results without applying the Levenberg-Marquardt method.

Transient Analysis of Hybrid Systems Composed of Lumped Elements and Frequency Dependent Lossy Disributed Interconnects

  • Ichikawa, Satoshi;Shimoda, Tomokazu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1096-1099
    • /
    • 2000
  • A method to analyze the high speed inter-connects that are composed of frequency dependent lossy distributed lines is presented. Network modeling of hybrid systems is implemented by using the modified nodal admittance matrix in the Laplace transformation domain. The network response is computed by different two methods. One method Is the asymptotic waveform evaluation (AWE) method and other is numerical Laplace inversion method. The merits and demerits of two methods are discussed by applying to several concrete illustrative networks.

  • PDF

Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 백재호;배형섭;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

Numerical Resistivity Modeling Using Alpha Center Theory: A Case History for Field Resistivity Data (Alpha center를 이용한 전기비저항 수치 모델링 : 현장 탐사 자료에 대한 적용 예)

  • 윤왕중
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.334-340
    • /
    • 1997
  • Alpha center theory which was first proposed by Stefanescu has been proved to be effective for the detection of the location of the conductive orebody. A numerical forward modeling was conducted to verify the effectiveness of this method. Field works were carried out along the three profiles in two different areas for the purpose of finding fractured zone which might be accompanied with the presence of the groundwater. And the results were modeled by alpha center method, which was later testified by wellproven 2-dimensional finite difference inversion scheme. Field data could be successfully modeled with this alpha center algorithm, especially for the smooth-varying resistivity models. For the abrupt change of the resistivity values, the alpha center coefficients have a tendency to be negative to simulate the steep resistivity gradients. This method is quite simple and easy for the future applications. The numerical calculation can be performed very quickly with the personal computers.

  • PDF