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Abstract: A method to analyze the high speed inter-
connects that are composed of frequency dependent lossy
distributed lines is presented. Network modeling of hy-
brid systems is implemented by using the modified nodal
admittance matrix in the Laplece transformation domain.
The network response is computed by different two meth-
ods. One method is the asymptotic wavewform evaluation
(AWE) method and other is numerical Laplace inversion
method. The merits and demerits of two methods are dis-
cussed by applying to several concrete illustrative networks.

1 Introduction

Due to the large number of interconnects present in VLSI
circuits, the simulation of interconnects is very importan-
t. Lumped circuit modeling is useful so long as the in-
terconnect is short in length. For high speed operations,
the interconnects ate no longer electrically short and dis-
tributed transmission line analysis must be introduced. In
high frequency applications the analysis of frequency de-
pendent effect becomes very important. Several methods
have been proposed for the analysis of the circuits that
contain frequency dependent lossy interconnects. Asymp-
totic waveform evaluation (AWE) method is a recently de-
veloped technique for time domain analysis of distribut-
ed interconnects[1],{2]. AWE is a computationally efficien-
t method that approximates the response of large system
with a low order transfer function. The poles and residues
of the transfer functions are computed by expanding the
transmission line parameters of the frequency dependent
lossy interconnects. But the accuracy of approximation-
s is not always sufficient. The formulation for modeling
frequency dependent lossy interconnects is derived in the
Laplace transformation domain. So, we can use the numeri-
cal inversion method[3}in order to obtain transient respons-
es. The objective of this paper is to present a simulation
method for hybrid systems composed of lumped elements
and frequency dependent lossy distributed interconnects.

2 Network
modeling for lumped and dis-
tributed elements

For circuits composed of lumped elements, network is for-
mulated by splitting the elements into two groups([4],[5].
One group is formulated by admittance description to ob-

tain
Y](S)VI(S)+AII[(S)—IJ1=O (1)
by Kirchhoff’s current law where Y is the admittance ma-
trix for node voltage vector V. Ar maps the unkown cur-
rent vector I; and by is the current source vector.
Other group is formulated by impedance description to
obtain

BuVir(s)+ Zir(s)1i(s) —br1 =0 (2)

by Kirhihoff’s voltage law where Z;; is the impedance ma-
trix for node current vector fr;. Brr maps the unknown
voltage vector Vi and bss is the voltage source vector.

Among the voltage vectors and current vectors in two
groups the following two relations must be held.

®3)
4)

Equations (1),(2),(3) and (4) can be combined in a single
matrix equation of the following form.

HyiVi(s) + HvuVi(s)=0
Hil(s) + Hruli(s)=0

Y[(s) 0 Ar 0 V[(s) by
0 Brr 0 Zir(s) Vi(s) | _ | bn

Hvy Hvin O 0 I1(s) - 0

0 0 Hyr Hin I11(s) 0
(5)

3 Multi-conductor Lossy trans-
mission line

For lossy multi-conductor transmission line, the voltage
vector and current vector at the position z are given by
the following telegrapher’s equations in the s domain.
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_ﬂfiiﬁ = [sL+ R(s)}(z,9) (6)
dl{z,s) _
I CeRR0) D) (7)

L,C are the per unit length inductance and capacitance
matrices and R(s), G(s) are frequency dependent lossy re-
sistance and conductance matrices.
Equations (6) and (7) can be combined in a single matrix
equation of the following form.
L7 ]

i + 1} sL+R
dz sC+G 0
(8)

Terminal voltage and current vectors of the line ends with
length ! can be expressed in the following form.

V(z,s)
I(z,s)

V(z,s)
I(z,s)

V(l,s V{0, s)
[ I((l,s)) } =T(s) [ I(((),s) } (9)
T(s) =exp {— [ sC +0G(s) sk +0R(s) } l} (10)

4 Formulation of hybrid sys-
tems

Hybrid system is composed of lumped network of equation
(5) and distributed networks of equation (9) and can be
combined in the single matrix equation resulting in

Y(s)X(s) = E(s) (11)

where Y(s) is a modified nodal matrix, X(s) is an unknown
vector and E(s) is input excitation vector. This equation is
solved by the two different methods. One is AWE method
and other is numerical Laplace inversion method.

5 Asymptotic waveform evalua-
tion method

We assume that modifide nodal matrix Y(s) is described
by the Taylor series at s = 0 as

Y{(s) = Z Yis' (12)
i=0
and unkown vector X (s) is also approximated by
g .
X(s)=Y Mis'. (13)
=0

Substituting equations (12) and (13) into equation (11) we
can obtain

[Yo+ Yis+ Yas® + - ][Mo +Mis+ Mzs* +--.] = E(s).
(14)

By matching the corresponding powers of ¢ the following
recursive relationship can be derived.

My = YJ'E

Yi! [— i YaMa_r
r=1

The approximate solution for j-th element of X(s) is given

k—4q ____i ki/pe
(=1 1—S/pl

S~ Pq
a7

(15)

M, n>1 (16)

k1 + ko
S—mn s —p2

+ 4

XJ(S) =

where p; and k; are approximate poles and residues.
The poles of the system are approximated by computing
the roots of characteristic equation given by

Go + @18 + @28 + -+ ag-187 7+ =0. (18)
The coefficients for polynomial are found from
me  m mg—1 —ao mq
my mo2 mq —a1 Mg+1
Mg-1 Mg M2(g-1) —aq-1 mM2q-1
(19)
where
m; = [M;]; 1=0,1,---,2¢~1. (20)
The residues of X;(s) are determined by
- - 1 a1
ky ) Pz; oopgt mo
k2 [ P S my
kq I Y Py ¢ Mg
(21)

6 Numerical Laplace inversion
method

In high frequency applications the interconnect impedance
is partially determined by the conductor skin effect and
the modified nodal matrix depens on the Laplace operator
s. Using asymptotic waveform evaluation, modified nodal
matrix is appproximated by Taylor series at s = 0. This
approximation will be most accurate in the neighborhood of
the dc region. Loss of accuracy will occur for high frequency
region. The complex frequency hopping (CFH) is used to
overcome this problem, but the approximated results are
not always accurate. We use numerial Laplace inversion
method to overcome this problem and obtain more accurate
results.

When the j-the element X;(s) of unknown vector X(s)
is obtained in s domain, we calculate its time solution z;(t)
numerically by the following formula at given points tn.

K~1
- 2
2;(tn) = ﬁ?%ﬂ ,:Re Z X (a + 1%) exp (i 7;‘nk)
k=0
X(a)
i) .
ta = QT% n=01,2--, K/2-1 (23)



7 Frequency dependent loss
due to skin effect

At lower frequencies the current flows uniformly over the
cross section of the conductor. Therefore the resistance and
the internal inductance of the conductor are constant and
equal to their dc values . The skin depth of a conductor is
inversely proportional to the square root of the frequency.
At higher frequencies the skin depth becoms less than the
cross section of conductor and the influence of the skin ef-
fect is no longer negligible. The per unit length frequency
dependent loss of a conductor is given by

Z.(s) = R+ BVs. (24)

The telegrapher’s equations in the s domain will change as

follows

_%}1;’_3) [sL+ Z(s){(x,1t) (25)
_d_IEizI,_s) = sCV(z,s) (26)

and T'(s) of equation (10) can be modified as

T(s) = exp {— [ sOC sL +OZ°(S) ] 1} X (27)

8 Illustrative examples

Example 1

A single phase lossy transmission line of length { shown in
Fig.1 is analyzed. The circuit has source and load resis-
tances of 502 each. The source is a ramp function with
50ps rise time and rises to 1V and per unit length parame-

ters are listed in Fig.1{2].

50Q v, AV
| Vo

I
= 86.207 Q/m

2.45323 x 107 VQH/m 5OQ
= 0805969 uH/m

= 88248 pF/m

QO = oy
I
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Fig.1 Circuit diagram of example 1

Calculated voltage response at far end is shown in Fig.2.
This line has the delay time

T4 = VLC = 8.434nsec (28)

per unit length, so wave front reaches at the far end with
delay time 1.687ns. Calculated result by Laplace inversion
shows this fact but results by AWE method do not show
this time delay. Calculated results by two different methods
did not show close agreement. It may be comcluded that
Laplace inversion method gives more accurate result.
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Fig.2 Voltage response at far end
Example 2

0

Three conductor lossy transmission line with length 15cm
shown in Fig.3 was also analyzed. Source is the same wave

form as examle 1.

: 20Q _V.1 #1 - Vi
I,

200 #92
V.
—— A= =
I,
20Q v, #3 vy

— : : P\/\/\r—°—|T3. [
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Fig.3 Circuit diagram of example 2

Per unit length parameters are[2}

8.018 1.719 0.363
B =

(29)

1.719 8.538 1.719>><10‘3 VQH/m (30)

0.363 1.719 8.018

3277 67.6 14.8
L= 67.6. 3236 67.6 nH/m
14.8 67.6 327.7

134.8 -28.8 3.2
C= —-28.8 146.1 —28.8 pF/m.

—3.2  —-28.8 134.8
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Calculated results of Vi at far end by two different methods
are shown in Fig.4. Solid line shows the result by Laplace
inversion and dotted line shows the result by AWE method
with CFH. Close agreement was not obtained in this case.
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Fig.4 Voltage response of V,

Example 3

Two conductor nonuniform transmission line shown in Fig.5
was analyzed. Source is the same waveform as example 1.

50Q

Fig.5 Nonuniform transmission line

50Q

#9

#2 #3 #4 #5 #6 #7 #8

Fig.6 Cascade connection of uniform lines

Nonuniform line is approximated by the cascade connec-
tion of 9 short uniform lines as shown in Fig.6. Per unit
length parameters are linted in Table 1. Calculated result
at excited far end is shown in Fig.7.

9 Conclusion

In this brief, we gave a formulation for transient analysis of
hybrid systems composed of lumped elements and frequen-
cy dependent Jossy distributed interconnects. Two methods
such as AWE approximation and numerical Laplace inver-
sion have been presented. From the calculated examples
it may be concluded that Laplace inversion method gives
more accurate results.

Table 1 Per unit length parameters

In=lp |lp=ly |cu=cn |cz=cn

[em] | [pH/ex] | [nH/em] | [pF/cm] | [pF/cm]
#1 1.0 1.96 0.23 1.84 -0.09
#2 0.14 2.00 0.225 1.80 -0.0815
#3 0.15 213 0.21 1.68 -0.0615
#4 0.14 2.325 0.195 1.52 -0.0425
#5 0.14 2.56 0.18 1.36 -0.0295
#6 0.14 2.85 Q.17 1.2 -0.0205
#7 0.15 3.225 0.165 1.04 -0.0145
#8 0.14 3.845 0.16 0.92 -0.0105
#9 1.0 3.7 0.16 0.88 -0.009
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Fig.7 Voltage responce at excited far end
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